TROLL

(The Trondheim Linguistic Lexicon Project)

October 1989

This report describes work in progress, and some of the chapters and in particular
the appendices will be subject to continuous updating. A full new report will appear
some time in 1990, and updated versions of chapters and appendices will be
available at irregular intervals. For information and comments, write to any of the
participants of the project (for the present: Anneliese Pitz, Lars Johnsen, Lars
Hellan) or to "TROLL", at the address

Linguistics Department
University of Trondheim
7055 Dragvoll

Norway

Trondheim, October 18, 1989.

Contents

L INEFOAUCHION. «.ucveneerrrcnecennsensrnnensssnsssennssesasssassessssssssssescnsesssssassssssssnsasessssaenees coensses 1
1.1. Purpose and goals. 1
1.2. LexScript and the representation of words 2
1.3. Derivation of entries. 3
14. LexEdit 6

2. The underlying grammatical CONCEPLS.ceerrerecrsvessnecrsrerenesseseasssensesssssnsesnasesss 8
2.1. Basic grammatical notions. 9

2.1.1.Instantiators’ of words: situations and things. 9
2.1.2 Predicates and external arguments 10
2.1.3. Thematic roles. 10
2.1.4. Synitactic arguments. 11
2.1.5. Implicit arguments 13
2.1.6. Levels of representation and the grammar as an accepting device. 14
2.1.7. The universality of templates. 15
2.2. Predicates for an abstract parsing application. 15
2.2.1. Parsing language predicates 16
2.2.2. Templates defined in parsing-level predicates 19

3. SYDLACHE fTAIMIES....cucueiirieerercnerasnerssersssessssssssesssssssnssssssasssnssssnssesssssnesemsensmsmnenensnsns. 20

3.1. The representation of syntactic argument frames. 20
3.1.1. The constituency of arguments. 20
3.1.2. The constituency of a SAF, and illustration of the LexScript predicates. ..., 22

3.2. Derivational effects at SAF. 24

3.3. D-sequences in LexEdit. 26

4. Semantic components 0f TROLLo.ccoveeeereersnenesneeseresossssseseesssssesomsessmsesensnnss 27
4.1. Introduction 27

4.1.1. The representation of situations 27
4.1.2. The components, 28

42.LLF. 29
'4.2.1. LLF of non-derived verbs. 30
4.2.2. LLF of derived verbs. 31
4.2.3. LLF of non-derived nouns. 34
4.24. LLF of derived nouns. 36
4.2.5. Conclusion. 39

4.3. SemProp = 39
4.3.1. Selection features. 40

4.3.1.1. The main selection features. 41
4.3.1.2. Formal representation of selection features. 43
4.3.2. Instantiator features. 44
4.3.2.1. Main instantiator features 44
4.3.2.2. Location of representation of instantiator features. 45

4.3.3. Entailment and relevance relations, and underspecification. 47

4.3.4. Conclusion. 49

4.4, Summary. 49
4.4.1. Organization of semantic information in an entry in LexScript. 49

4.4.2. Semantic information in LexEdit. 51

5. Segmental properties. caeesssesssissessanssssesttossasanesasesnansasesse 3
6. LEXSCIIPL covurnneuercnsesereisiasssssansasnsssssssasessessssssssssssssssssssssssssessssssenssonsesssonsssssossessnsnss 38
6.1. Introduction 58
6.2. Basic structures. 59
6.3. Structuring the Lexicon........ 60
6.3.1. Atoms ' 61

6.3.2. Numbers 61

6.3.3. Strings 61

6.3.4. Variables 61

6.3.5. Sets and Graphs. 62

6.4. The hierarchy constructor '++' 63
6.5. The Structure of Entries 65
6.6. An Example 66

7. FINAl TEMATKS. ...cvvueirririsecnsossrsonsessssasessssssssssesssssessssassasssesesssnsssssensessessessssesenensenenns. 11

RefereNCEeS ucinrierrcerecnseraesnererssssosessnssseesses eeeesesenastenrntonsssrsensansronrasetessesessensesaresnnnnnsars 71

TROLL
(The Trondheim Linguistic Lexicon Project)
October 1989

1. Introduction.

1.1. Purpose and goals.

The purpose of the project TROLL is to produce a system, called by the same
name, for encoding lexical information, in principle for any language, and in a way
which is neutral with regard to specific applications. That is, any part of the
lexicon TROLL should be applicable to an indefinite number of uses, albeit none
of these uses is part of the system itself. For purposes of the design of TROLL,
we have two applications specifically in mind: using the system as a database for
question-answering concerning the lexicon of a language L, and using the system
as a repository for the lexical part of automatic parsing programs or speech
recognition programs for L.

By the lexicon of a language, we understand the total amount of information
tied to the words of the language. The information concerning a given word
comprises not only its phonological/graphemic shape, its morphological structure
and core meaning, but also all of its combinatorial properties, both syntactic and
semantic; thereby the description of a word W includes all contributions of W to a
sentence where W occurs. Hence, the lexicon will contain much information that
is often classified as syntactic or combinatory semantic information. Moreover,
some of this information is 'regular’, in the sense that it may be predictable from
other pieces of information in the system. Hence, the amount of information con-
tained in the lexicon goes far beyond what might be thought of as the 'basic' or
idiosyncratic' properties connected with words.

Given such a scope, it is clear that the construction of a lexicon for a
language L is an overwhelmingly complex task. For this reason, key importance
is given to the following requirements:

(1) At any stage, the lexicon must be open to updating, in two respects:

a. The amount of information that can go into a lexicon is really
infinite, hence the lexicon must always be expandable. We may
say that in this respect, the lexicon will grow.

b. New insights in the various linguistic or organizational aspects of
the lexicon may call for modifications of the system, some of them
so basic that we may speak of a regeneration of the lexicon, i.e.

1. Introduction

the 'birth' of a new lexicon. The capacity for such regeneration is
to be an essential characteristic of the system from the beginning,
and to stay with it at all stages.

(ii) No single group of researchers can hope to achieve, within a reasonable
amount of time, a satisfactorily complete lexicon in the sense in question. Hence
it is desirable that different groups in different places can cooperate on the con-
struction of the same lexicon. This comes out technically as a requirement of
unifiability of various pieces of information, possibly created in different places.

The main type of target for the question-answering application is linguistic
concepts; that is, questions will be asked about linguistic concepts (e.g., "which
verbs allow adverb incorporation?”, "do all verbs with transitivity alternation
allow passive?", etc.). The choice of system of such concepts in TROLL is not
unrelated to the parsing application: this application requires a grammar which is
complete in the generative sense, assigning correct structure and interpretation
to all sentences. We assume that by and large, the set of notions contained in the
grammar behind such a system will include the set of concepts used for the
question-answering aspect. This goes for other conceivable applications as well,
relative to the parsing application. Hence, at the bottom of the lexicon TROLL,
we assume a generative system of linguistic concepts and rules, required in its
entirety for the parsing application, and serving as a 'pool' from which notions
relevant to other applications are drawn. Section 2 gives a partial outline of this
generative system.

1.2. LexScript and the representation of words.

The information-holding system itself is called LexScript, to be outlined in section
6. The information held by this system is essentially organized as an attribute-
value (AV-) graph. A key type of entity in the system is the lexical entry, which
contains all information related to a word. The main attributes of the graph
constituting an entry for an inflected word of category V, N or A are as follows:

(1)
Id: ¢{

Cat: {
Major_cat:
Minor cat:
Inst_feat:

}

Segmental: {
Morphon:
Morphgraph:

}

Template: {
SAF: ...
LLF:

Cs: ...

}

SemRel:

1. Introduction

'1d’ here is a unique identifier for the entry, technically a number. 'Cat' is categorial
information, "Major_cat' defining main word class, 'Minor_cat' providing features
for inflection and other syntactic features. Concerning 'Inst_feat', see section 4.

The attribute 'Segmental' (for 'Segmental properties') assembles those
properties which pertain to the segmental manifestation of the entry: ‘Morphon'
gives morphophonological information, and ‘Morphgraph' displays the graphemic
counterpart of the former; see section 5.

"Template' covers the syntactic frame of the item and its semantic proper-
- ties: 'SAF' stands for 'Syntactic Argument Frame', 'LLF' for 'Lexical Logical Form'
and 'CS' for 'Conceptual Structure'; see sections 3 and 4.

‘SemRel', finally, provides largely pragmatic information concerning the
denotata of words; see Appendix 10.

The lexicon will provide information concerning each type of occurrence for a
word, subsuming inflectional variants, semantic variants, syntactic frames, allo-
morphic and allophonic/allographic variants; there will therefore be entries giving
complete specification with regard to all of these properties. In addition, the
lexicon should capture intuitions concerning class membership of such occurrence
types. For instance, forms like eat, eats, ate, eaten, and gating are seen as
inflected variants of one and the same entity, commonly called a lexeme; the
occurrences of eating in John is eating and John is eating fish are seen as frame
alternations of one and the same verb; forms like read, readable and readability
are seen as derivational variants with one and the same root, to mention some
examples. In all of these cases, various concrete word forms belong to one and
the same more abstract entity, the nature of the entity differing from case to case.
To capture these 'belong’' relationships, we give special importance to the notion
derivation, as outlined in the next subsection.

1.3. Derivation of entries.

Common to all derivational relations is that in TROLL, there will be a 'source' or
'input’ entry and a 'derived’ or 'output’ entry, the input entry representing the more
abstract type of entity of the dimension instantiated by the relation. For instance,
if y is what would be called an inflected form of the lexeme X, there will be a
derivational function f such that y=f(x), f inducing the inflected form in question;
likewise if y is one among many frame alternants for the verb x, etc.. Such
functions will be called derivational rules, or D-rules, which gives the notion
'derivation' somewhat larger scope than in the terminology which contrasts
'derivation’ with 'inflection": in the present terminology, inflection is one subtype of
derivation, what is traditionally called '(morphological) derivation' another.

1. Introduction

What is output entry of one D-rule may be input to another, giving rise to
sequences -of D-rules, or derivational sequences. Some entries are counted as
non-derived, serving as value of no function. Such an entry will be called the basic
entry relative to a sequence in which it takes part. At the other end of a
sequence, an entry serving as argument to no function is called the end entry of
the sequence. Derivational sequences will be represented on either of the forms
(2a) or (2b), the latter being the prolog-readable version:

(2) a. '‘AIBICID ...
b. ‘A++B++C++D ...

In either version, A refers to the basic entry and B,C,D,... are names of D-rules.
In general, the configuration 'X | Y' (or 'X ++Y") can be interpreted to the effect
that the rule Y applies to the entry represented by X, 'X | Y representing a new
entry. This interpretation applies iteratively from left to right, 'X' on each iteration
covering the whole string to the left of the 'I', while 'Y" is always a single rule.
(For a technically more accurate interpretation, see subsection 6.3 below.) For
any point X in a sequence X | Y | Z | W .., the part 'Y | Z | W ..." is called the
continuation of X, while relative to Win X 1 Y| ZIW .., thepart X 1Y |Z'is
called the history of W.

~ We distinguish between D-rules interconnecting entries belonging to the
same lexeme, and D-rules interconnecting entries belonging to different lexems,
called intra-lexeme and cross-lexeme D-rules, respectively. Processes accounting
for pairs like laugh-laughter (those traditionally nomed 'derivations') are
constructible as cross lexeme rules; the main subtypes of intra-lexeme rules are
D-rules inducing inflection, called inflectional rules, and D-rules inducing alterna-
tions in syntactic frame and perhaps logical form of a given lexeme, called frame
alternation rules.

It is essential to the present notion of derivation that what we may call the

core meaning of the word represented by an entry stays unaffected throughout a
derivation. Among the semantic changes that are allowed, the most important
ones are aspectual changes and addition of material in the structure part of LLF.
As a putative constraint on this part of LLF, we assume the following persistence
principle:

(3) Logical form persistence:

If the entry T2 is derived from entry T{, then the structure part of
LLF of T1 must be properly contained in the LLF of T3.

The structure of LLF is treated in detail in section 4.

1. Introduction

A family of derivational sequences is defined as the (largest) set of deriva-
tional sequences that have the same basic entry. We distinguish between those
families of derivations where all end-entries belong to the same lexeme, and
those where they do not, called intra-lexeme and cross-lexeme families,
respectively. In an intra-lexeme family, all the D-rules that can apply are thus
inflections and frame-alternations, and the base will be the entry representing the
stem of the inflected word forms. In a cross lexeme family, also cross-lexeme D-
rules are represented in the derivational sequences.

Of particular interest in TROLL are families whose bases are entries repre-
senting root morphemes: these are cross-lexeme families, yielding (ignoring
compound words) the whole set of morphologically complex words with the base
in question as root. We will call these families root Jfamilies. Included here are
also the intra-lexeme families branching out from every node representing a
possible stem entry. (4) is an informal illustration of what a root family may look
like, with the Norwegian verbal root prate ‘chat' as base. 'V-infl', 'A-infl', and 'N-
infl" stand for rules inducing inflectional patterns for verbs, adjectives, and nouns;
som is a label for the rule affixing som to a stem, thereby creating the adjective
pratsom, and het is the noun-deriving rule suffixing het, deriving pratsombhet;
these sequences constitute only a subset of the full root family of prate:

(4)
base ++ V-infl
base ++ Pass ++ V-infl
base ++ IV _smallcl ++ V-infl
base ++ IV _smallcl ++ Pass ++ V-infl
base ++ som ++ A-infl
base ++ som ++ het ++ N-infl

Root families will be the key objects of the database, in the sense that the
content of every entry representing a word (at any abstraction level: inflected
word, lexeme, ...) will be a function of the history of that entry within some root
family. Consequently, in the characterization of a root morpheme, not only the
attributes listed in (1) will have to be specified, but also the whole set of
continuations of the entry. For details and examples, see 6.3-6.5 and, for lists of
possible D-sequences, appendices 5 and 6, with introductory remarks in 3.2 and
3.3.

Derivational rules are conceived as having as their scope the totality of an
entry, meaning that the operations of a derivational rule may apply to any set of
attributes inside the entry. Thus, among the rules referred to in (4), all of the -infl-
rules and som and het yield segmental changes, som and het also yield changes
under Cat and Template. The rules Pass and IV_smallcl both operate on
Template, Pass also on Cat:Minor_cat. The ways in which the various attributes
are subjected to D-rules are treated in detail in the various sections throughout.

1. Introduction

A general point can be made here, however, viz. that D-rules will often be
parametrized, with parameters ranging over all the attribures of an entry. That is,
a rule may leave open choices as to form of some item to be added, its mode of
combination, whether certain effects take place under 'Template’, and so on -
examples will appear in the various sections. Formally, in the description of the
rules, the parameter values are entered in parenthesis behind the rule name, with
no upward limitation on the number of parameters available for each rule; see
appendices 3a and 3b.

In current linguistic theory, there is so far no full account of what we treat
here as derivations, and the present proposals may be partly seen as an
advancement towards such a theory. For a general remark concerning the rela-
tionship between this lexicon and linguistic theory, see otherwise the beginning
of section 2.

The derivational rules in the present system may be regarded mainly as
construction rules, adding or subtracting building blocks of the entries. Once
certain aspects of an entry get marked as being subject to the application of a
derivational rule, the derivational sequences acquire key importance from the
perspective of question-answering to the data-base, since rule names in deriva-
tional sequences are possible targets for question-answering. In terms to be
introduced in section 6, the derivational sequence thus represents an intensional
aspect of the system. For the parsing application, on the other hand, it is the end
entries which are crucial (representing the extensional aspect). Even for the
purpose of a parser searching for a suitable entry to match a string, though, the
derivational histories may systematize the search process, and thus be useful
also from the parsing perspective. For the design of the lexicon, finally, this type
of analysis provides an efficient tool for the classification of entries, and espe-
cially for later reclassification.

. 1.4. LexEdit.

A special system is devised for the process of loading data into the database,
called LexEdit. It satisfies certain general requirements:

1. It should be possible to work with for a linguist without any
knowledge about programming or database organization,

2. It should be maximally error-proof. For instance, since any use of
the keyboard implies the possibility of making mistakes, as much
of the information-loading as possible is done via choices from
menues. Thus, the listing of D-rule sequences for a given root is
done via menues, corresponding to those found in appendices
6a,b.

1. Introduction

This presentation is organized as follows. The content of LexScript will be
discussed first, according to the division of entries into attributes (sections 2-5);
we then treat the technical implementation of the system (section 6). The
presentation of the content of LexScript starts with a survey of key notions and
assumptions in the area of syntax and semantics (section 2); then follows the
organization of syntax (section 3), semantics (section 4) and segmentals
(section 5), each section including the effects of derivational processes in the
types of attributes in question. Remarks are also made concerning the organiza-
tion of LexEdit for each type of information.

2. The underlying grammatical concepts.

A comment may be made immediately on the relation between the TROLL
system and what are commonly regarded as linguistic theories. A theory is in a
sense a leap into the unknown; the TROLL lexicon states what is known. Still,
this lexicon purports to be a tool in (among other tasks) the construction and
evaluation of linguistic theories, and in this capacity has to make all the distinc-
tions that will be relevant for these purposes. This is not possible without
linguistic theories playing a major role when classifications are made in the
lexicon: in constructing the lexicon, one, so to say, has to foresee what the
theories may possibly claim, and to do this, one necessarily has to base oneself
on some sort of theory, or rudiments of a theory.

In slightly different words, what the entries may be seen to constitute is a
description of the theorems that ought to be derivable in a theory of the lexicon.
That is, for any number of distinct entries listed for a lexeme in the present
lexicon, a theory should be able to derive them, or counterparts with the same
essential properties, as distinct entries. As such, the present lexicon is a kind of
descriptive grid that any theory should match. Again, of course, no such grid can
be constructed without the designer having a fairly clear idea what a possible
theory should look like.

We assume the generally accepted division of 'layers' of the grammar,
including phonology, morphology, syntax, semantics and pragmatics. The lexicon
communicates with all of these levels, and so the lexicon will be partitioned into a
corresponding set of levels. Most of the work done in TROLL so far has been on
morphology and syntax, somewhat less on semantics and very little concrete on
phonology. Our remarks in this section therefore mainly concern syntax,
morphology and semantics.

The syntactic framework is broadly speaking that of generative grammar,
with elements both from contemporary schools (GB, LFG, GPSG, ...) and from
transformational grammar of the 60s and 70s. Of recent works which have had an
impact on the TROLL system we may mention Williams 1985, Zubizarreta 1987,
Grimshaw 1988, and, most directly, Hellan 1988. In semantics, our assumptions
are presumably compatible with most frameworks.

In general, as far as the function of TROLL as a database for question-
answering is concerned, our choice of framework and terminology should not have
any excluding effect on concepts and terminologies of other frameworks, including
the 'framework’ of ordinary language as concerns language: correspondences of
usage across frameworks will be established, so that a user can approach the
database with the terminology familiar to her/him.

2. The underlying grammatical concepts

We now give an elementary exposition of various of the basic syntactic and
semantic notions (2.1), and then sketch elements of a parsing oriented language
deploying these notions (2.2). This language serves mainly as a relational
encoding of the linguistic concepts to be discussed, but will, in this capacity,
provide a supplementary perspective on the information held in the syntactic-
semantic part of LexScript outlined in section 3.

2.1. Basic grammatical notions.

2.1.1. 'Instantiators' of words: situations and things.

Semantically, any occurrence of a word of category V, N or A has an instantiator.
This is the entity in the (referential) world which is correctly described by the
word (or an expression semantically headed by the word). For verbs, the instan-
tiator is typically a situation (subsuming events); for adjectives, it is a state
(which is also subsumed under situations). For instance, what is correctly
described by the sentence John runs is a situation consisting of John running; the
verb run is here the 'kernel, or, in a semantic sense, the 'head' of this sentence.
For a particular occurrence of the verb, the instantiator is a particular situation;
for the verb as such, what we call its instantiator is a type of situations, namely
running situations in general. Likewise, what is correctly described by John is tall
is the state of John being tall; here tall is semantically the head, and is instanti-
ated by 'tall-ness' states (situations) in general. For nouns, the instantiator is
either a (concrete) thing or a situation. We take the view that what instantiates a
(root) noun like goat is not any state or situation of 'goat-ness’', but simply the
individual goat itself. Verbs and adjectives are thus, loosely speaking, situation-
geared, while root nouns are thing-geared.

The constituent denoting the instantiator of a given noun is the NP domi-
nating that noun, if this NP is definite singular. As a notion in the realm of
‘denotation' which also covers indefinite and quantified NPs, we introduce the
notion representative: A representative of an NP is an entity with regard to which
the descriptive content of the NP is evaluated. That is to say, a representative of
an NP is a denotation of the variable 'x' associated with the expressed quantifier
in a standard predicate logic formalization of a sentence involving the NP. (In the
terms of Barwise and Cooper 1981, a representative is something like a 'witness'
in the 'witness set' of the NP.) Thus, a representative of an NP is an instantiator
of the common noun heading the NP. (For further remarks, see section 4,
especially 4.2.3.)

2. The underlying grammatical concepts

2.1.2. Predicates and external arguments.

Verbs, adjectives and nouns have in common that the constituent of which they
are the syntactic head - VP, AP and CnP (common noun phrase), respectively -
serves as a predicate, i.e., a semantically uni-valenced expression expressing a
property (or act). A property (or act) is something which is 'ascribed to' an
entity E, and what is expressed through such an ascription is a situation. The
construction eéxpressing this ascription is called a predication, and the expres-
sion denoting the entity E is the 'subject’ of the predication. Since this 'subject’
expression typically occurs as a sister of the (syntactic) maximal projection of the
word, it is called the external argument (ea) of the word. (As a derivative way
of speaking, we call this expression the external argument also relative to the
VP, AP or CnP.) '

Syntactically, the CnP is typically contained in its own external argument
(namely, the dominating NP), whereas a VP is a sister of its 'subject’. APs
behave both ways: when attributive, they are inside their external argument (viz.,
the dominating NP), when predicative, they are sisters of it (ignoring the possible
copula). It follows that the ea of a noun is identical to the NP whose repre-
sentative is the instantiator of the noun (an idea which is also behind the 'R'-role
of Williams 1983 and Zubizarreta 1987, and in effect present in Montague 1974),
whereas for a verb or an adjective, the ea is distinct from the constituent (if any)
denoting its instantiator. In other words, in the case of nouns, the entity of which
the CnP is predicated is exactly the thing instantiating the noun, whereas for
verbs and adjectives, the instantiating situation is always distinct from the deno-
tation of the external argument. :

2.1.3. Thematic roles.

Words occur with a certain number of arguments (for more on this notion, see
2.1.4 and 2.1.5). Arguments are linguistic items. Many of them carry thematic
roles (theta-roles). One way of charabterizing thematic roles may go as follows:
In a construction where a V, A or N occurs, various entities are referred to which
stand in a certain relation to the instantiator of the word. For instance, in John
milks the goat, the entities referred to by John and the goat stand, respectively, in
the 'doer' and the 'undergoer’ relation to the event described; in the book by John
about goats, John stands in the creator relation to the thing being classified,
which in turn stands in an 'about-ness' relation to goats.

Theta-roles are often regarded as being associated with the words them-
selves - the verb milk is said to have (or ‘assign’) an Agent and a Theme role,
and the noun book has a Creator role and an 'Aboutee’ role. This is consistent
with the view presented in the preceding paragraph, in that the individual words
clearly are the carriers of a 'recipe' for how the role composition of the instantiator
of the word is to be understood. Another intuition, which harmonizes slightly less

10

2. The underlying grammatical concepts

with that view, is that in the case of situations instantiating verbs, the role
bearers seem in a sense to be constituents of the situations, which is not quite
the same as saying that the roles are relations obtaining between the situations
and entities. However, both views have something to recommend them: in the
case of situations, roles are ‘inward percolable' to varying degrees, depending on
how the situation is referred to. With verbs, the roles of a situation usually are
expressed by NPs occurring inside the sentence referring to that situation. When
nouns are used for reference to situations, however, like mistake, the role bearers
are often expressed outside the NP referring to the situation, via light verbs such
as commit, like in John committed the mistake; but they can also be expressed
inside the NP, as in John's mistake. Such variation suggests that even with a
situation, a role may be conceived as 'outside’ it even when its bearer clearly is a
constituent of it. Throughout, we will adopt parts of both perspectives; see 4.1.1
for further remarks.

As a terminological point, 'bearing a theta-role' is a property which belongs
to entities in the real world: in John buys the goat, it is John, not John, which
bears the Agent role. As a derivative way of speaking, though, we will also say
that NPs bear theta-roles, meaning that they denote entities bearing the roles in
question.

Thematic roles can be divided into central and marginal roles, relative to a
given word w: central roles of w are those which must obtain when the instantia-
tor of w obtains, marginal roles may obtain. 'Obtaining’ in this connection means
'be understood' - it is not always necessary that a central role be syntactically
expressed (by a phonologically realized item, a trace, PRO or pro). On this issue,
see further in 2.1.4 and 2.1.5.

At various points in the literature on thematic roles (which is large, with no
contribution having specific impact on the use of the notion here), it has been
suggested that thematic roles have a feature-like composition. Although the role
labels used here are atomic, nothing precludes in principle the adoption of a
feature composition of them; cf. 4.3.1.2.

2.1.4. Syntactic arguments.

We define as an argument of a word w any constituent whose occurrence is
somehow required or regulated by the presence of w. A syntactic argument
frame (SAF) for w is a set of arguments which defines an admissible frame of
occurrence for w. For verbs, the main types of arguments are the external argu-
ment (corresponding to 'subject' in traditional terminology), the governee (or
direct object', abbreviated 'DO', like the book in read the book and give John the
book), the indirect object (10, like John in give John the book), a predicative (like
happy in John is happy and make John happy), and a PP-argument (also called an
indirect argument, like John in talk about John). (For further types, see 2.2.1 and
appendix la.) These argument types will also be called syntactic functions; they

11

2. The underlying grammatical concepts

represent relations in which the arguments stand to the verb, viz. the relations
‘ea of', 'governed by', 'indirect object of’, 'predicative constituent of (not to be con-
fused with 'predicate of', the relation mentioned in 2.1.2), and 'PP-argument of".

'Govern' in the sense used here is a relation between a verb or preposition
on the one hand, and an NP or clausal constituent with a function similar to an
NP, on the other. A governor can govern only one XP-item, and adjacency is
commonly required between governor and this XP-level governee. According with
common assumptions, we assume that when an XP is governed by a governor G,
then G also governs the head of the XP.

It is not unreasonable to assume that when a verb governs an NP, this
government relation serves as a mark of which of the roles associated with the
verb is assigned to this NP. Many roles are signalled by choice of preposition
(i.e., when the role-bearer is a PP-argument: as opposed to adjunct PPs, we
assume that the NP in a PP-argument gets assigned a role by the verb, which is
however also expressed by the preposition), and the indirect object position also
seems earmarked for a certain role, the bene/malefactive. For any verb, there
generally seem to be only two theta-roles in its frame which are assigned without
help of these devices, and for these roles, the following principle can be hypothe-
sized to work: the highest (according to a certain 'agentivity' hierarchy) of the two
roles is given to the (unique) external argument, the lower one is given to the
(unique) governee, i.e., the direct object. (In accordance with this, the external
argument and the direct object may be called the direct arguments of the verb.)

For some governing words, the governed items are obligatory, in the sense
that they cannot be omitted, given the presence of the governor. (We keep open
the possibility that also ungoverned items can be obligatory in the present sense,
like indirect objects for certain verbs.) Obligatoriness is clearly a property distinct
from that of being governed, but it is not obvious that it is a homogeneous notion
itself. For instance, from a different angle, 'be obligatory' might be interpreted as
'must be expressed’: what such a property belongs to is a thematic role, whereas
'omissibility' pertains to syntactic items. The next subsection pursues the per-
spective of realizing thematic roles, and then returns to the topic of obligatori-
ness.

For nouns the main argument types are PP-arguments, genitives and, in
some languages, incorporated nouns, aside from the external argument (see
above). For adjectives, PP-arguments are the only type, apart from the external
argument. Obligatoriness of arguments is rare for these word classes; one type is
discussed in Grimshaw 1988. In this exposition, we mainly discuss verbal
argument frames.

The syntactic argument frame (SAF) of a given word w is assumed to
define those properties of the environment of w in any string where w occurs
which are relevant to the syntactic rules and principles of the language in
question. It is a moot question whether information about thematic roles must be
accessible to these rules (cf. e.g. Hellan 1988 to the effect that it must, Grimshaw

12

2. The underlying grammatical concepts

1988 that it must not); we open for the possibility that it may, so that a syntactic
structure will be assumed to be characterized at least along the following three
dimensions: thematic role, formal category and syntactic function. A lexical syn-
tactic argument frame, which defines the admissible syntactic frame in which a
word may occur, accordingly must be characterized along the same three dimen-
sions. That is to say, each argument in a frame is characterized with regard to
these three properties.

(The conception of a SAF as involving three layers of information, such that
each argument is characterized by category, thematic role and syntactic function,
is in accordance with the notion of Lexical Linking in Hellan 1988.)

2.1.5. Implicit arguments.

In a given construction, a thematic role may have either of the following possi-
bilities of 'realization':

It is not understood at all.

b. It is understood, given the semantics of the head word, but it
plays no grammatical role.

c. Itis understood, it plays a grammatical role, but it is still a degree
lower in 'visibility' than such standard items as trace, pro and
PRO.

d. It is understood, and it is expressed by a phonologically realized
item or either of the empty categories trace, pro or PRO.

A typical example of possibility b. is the agent role in English middle con-
structions. Here we will say that the role is suppressed. Possibility c. is treated
extensively in Hellan 1988, Roberts 1987 and others, and we say that in this
case, the role is represented by an implicit argument. Examples are the agent in
short form passives, the unexpressed agent in an NP like the destruction, to
mention a few. Arguments being in principle linguistic items, we can not say that
the role by itself is an implicit argument; the argument in question must be an
item at the expression level. For the item serving as implicit argument, we intro-
duce a new type of empty category called 'Referential phrase' (RP), which counts
as the formal category of the implicit argument; the notion ‘implicit argument'
itself is treated as a function category. Given the thematic role realized by the
implicit argument, this is thus a syntactic argument formally of the same type as
the other syntactic arguments. In Hellan 1988, it is proposed that implicit argu-
ments emerge only at a special level of representation, P-structure, which is
distinct from the ordinary syntactic levels (see 2.1.6). The introduction of such a
level - if adopted - will belong in the parsing mechanism, and a 'level-confined'
status of implicit arguments will in case have to be marked in the lexical descrip-

13

2. The underlying grammatical concepts

tion. Here we give no such marking, pending the issue of whether such a level
should be assumed.

Both the suppressed roles and those represented by implicit arguments are
supposed to be central, relative to the head word in question.

Implicit arguments typically alternate with phonologically full expressions.
These alternation possibilities lead us back to the notion 'obligatoriness’: in some
constructions where the head word allows a syntactically fully visible category to
be omitted, this will formally, in the lexical description of the word, be repre-
sented as an alternation between various realizations of the role in question,
including the realization as an implicit argument. Thus, what might seem like an
optional occurrence of the 'visible' item XP may really be the obligatory disjunc-
tion of the occurrence of XP and that of an implicit argument. For verbs, these are
the cases falling under the phenomena 'DO-deletion’ and passive, described in
appendix B, both constructed as derivations in the present system. Implicit
arguments in nominalizations will also arise via derivational processes. Whether
there are also implicit arguments which must be posited in underived SAFs, obli-
gatorily or optionally, is not clear in general, and in the entries for verbs consid-
ered in this note, implicit arguments will arise exclusively via derivational pro-
cesses.

It should be noted that the question of deciding whether an implicit
argument obtains or not remains to be fully clarified. The syntactic criterion, apart
from alternation with a phonologically visible item, is that the presence of an
implicit argument in a string is analytically required by its capacity as a binder of
an anaphor or some other syntactic process: for such cases, the SAF should at
least supply the possibility that the implicit argument appears. The semantically
necessary criterion is that the role is understood, but this is not a sufficient crite-
rion, as it does not distinguish between suppressed arguments and implicit
arguments. Note that if an implicit argument is treated as optional and does not
appear in a given SAF, the thematic role otherwise realized by this implicit
argument is still in what we call the Conceptual structure of the verb in question;
see 4.1.2.

2.1.6. Levels of representation and the grammar as an accepting device.

From a parsing perspective, it is interesting to model the rules and principles of a
grammar as acceptance mechanisms (see Hellan 1988 for a general exposition of
such a model of grammar). In the case of lexical information, such a strategy can
be implemented by construing the templates of words as sets of syntactic and
semantic conditions on what occurs in the environment of the words in input
strings. Thus, if the environment of a word w in a given string S satisfies none of
the templates of w, S is ungrammatical, and if S does satisfy some template T for
w, then T determines (partly or completely) the syntactic structure and semantic
interpretation assigned to S.

14

2. The underlying grammatical concepts

Such an acceptance strategy can also be made apply to non-lexical phenom-
ena, such as anaphora and trace-binding. In general, one wants the parsing
mechanism, to as large an extent as possible, to apply to sentences in their
'surface' form. We want to keep open the possibility that reconstruction of an
underlying level like NP-structure of van Riemsdijk and Williams1981 must be
available, but no lexical frame is defined for any putative level 'deeper’ than that.
Simplifying considerably, we thus assume that for parsing purposes, a 'syntactic
derivation’ of a sentence s starts with s presenting itself in its S-structure config-
uration, whereupon it produces a version of s with its NP-structure configuration
if items remain unaccepted in the S-structure version. (P-structure, if used, comes
into play as an expansion of NP-structure in turn; cf. 2.1.5.)

2.1.7. The universality of templates.

The conditions couched in the SAF of a template will contain predicates of
varying degree of abstractness - ranging e.g. from linear precedence predicates,
via predicates for syntactic categories and syntactic functions, to predicates
expressing semantic roles. The higher the level of abstractness of the predicates,
the higher is - most likely - the level of universality of the conditions containing
them. Abstracting away lower level conditions concerning such factors as linear
precedence, one may thus define partial templates of highly cross linguistic
relevance. In the templates to be outlined below, this is what we do. For each
language, general rules must then be added, stating e.g. where a governee is
located relative to its governor, whether external argument status is marked by
place in a structure or by case marking, etc. Such language specific rules are
needed whether the grammar is conceived as an abstract system or implemented
as a parsing system.

2.2. Predicates for an abstract parsing application.

In 2.2.1 we give samples of predicates in a language we call the parsing language;
the full list is given in appendix la. The language is not part of any actual parsing
program, but its predicates correspond to most of the concepts introduced above,
in a form amenable to use in a prolog parsing program. 2.2.2 provides some illus-
trations of how the predicates of the language, or really the clauses they support,
can be used to define a lexical template. The clauses of the parsing language have
the following content: ‘
Given a word or morph w defined by an entry E, a special variable z, called
the entry variable, will represent w in the specification of templates in E. Each
constituent in the SAF of w is represented by a specific constituent variable x;j.
The representation of a template of w consists of a sequence of clauses, each

15

2. The underlying grammatical concepts

composed of a relation expression and one or more arguments, usually z and/or
Xj.

In the present connection, the parsing language has as its main function to
provide a supplementary perspective on the system LexScript; in some respects
it may be seen as an interpretation of it. For most of the predicates used, more
linguistic documentation is of course called for, but as that would exceed the
limits of this note, we mainly provide just illustrating examples.

2.2.1. Parsing language predicates.

In what follows, the parsing language predicates are given in a clausal context,
where 'z' and 'x' mark the positions of the entry variable z and the constituent
variable xj, respectively, relative to the predicate, and 'u' and 'v' hold the place of
variables distinct from z and xj in the relevant sequence. In the illustrating exam-
ples, the constituent corresponding to the first variable ('x' or 'u') is given in
boldface, the constituent corresponding to the second variable ('z' or 'v') in italics.

The grouping of predicates under 'Thematic roles', 'Semantic predicates’,
‘Syntactic category' and 'Syntactic function' does not play any formal role in this
language, but facilitates seeing the connections between this interpretive
language and the corresponding elements in LexScript.

Expression Reading and example

Thematic roles

ag(x,z) x realizes the agent role associated with z
(John ate the cake)
exp(x,z) x realizes the experiencer role associated
with z
(John worries Bill)
th(x,z) x realizes the theme role associated with z
(John ate the cake)
ben(x,z) x realizes the benefactive role associated
with z
(John gave Bill a book)
dir(x,z) x realizes the directionality role connected
with z
(John sent the book to me)
loc(x,z) x realizes the locative role associated with z
(John Jives in London)
pred(x,z) X is a predicate in the syntactic frame of z
(John made Bill sick)

16

deg_pred(x,z)

no_role(x,z)

no_role(x)
cog_obj(x,z)

inher_obj(x,z)

Semantic predicates
inst(y,z)
rep(x,y)

situation(y)
agent_of(x,y)

Syntactic functions
ea(x,z)
gov(x,z)
i0(x,z)

pp_arg(x,z)

predic(x,z)

impl_arg(x,z)

adverbial(x,z)

2. The underlying grammatical concepts

x 1s a degenerate predicate in the syntactic
frame of z
(Jon dummet seg ut
Jon made a fool of himself")
x has no semantic role with regard to z, but
possibly with regard to other elements
(John made Bill sick)
x has no semantic function
(it rains)
X 1is a 'cognate object’ of z
(John died a dreadful death)
X is an inherent object of z
(Jon harket slim)

y is the instantiator of z

X is a representative of y

y is a situation

the representative of x carries the agent-of
relation to the situation y

X is external argument of z
(John read the book)
X is governed by z
(read the book, on the floor)
x is indirect object of z
", (John gave Bill a book)
x is a PP expressing a central role associated
with z
(John talked with Mary)
x functions as a predicative in the frame of z,
either as a full predicate (‘pred’) or as a de-
generate predicate (‘degpred')
(John made Bill sick)
X is an implicit argument of z
(the x artack, John was killed x)
x has adverbial function with regard to z
(g0 quickly, sing in Budapest)

17

gen(x,z)

refl(x,z)

incorp(x,z)

attrib(x,z)

lightv_float(x,z)

Category predicates

max_proj(u,v)

2. The underlying grammatical concepts

x functions as genitive in relation to z

(John's book, vennen til Jon)
x is a 'de-argumentized' reflexive associated
with the verb z

(Jon skammer seg, Jon vasker seg,

Jon gikk seg en tur)
X is incorporated as sister of z in a word
(stem) where z is head

(husbygging)
x is attribute of z

(a yellow house)
x is subject for a 'light verb' which has z as
complement

(John committed murder)

u is the maximal projection of v

P(x) X is a preposition

PP(x) x is a prepositional phrase

Adv(x) X is an adverb

AdvP(x) X is an adverb phrase

AP(x) x is an adjective phrase

NP(x) x is a noun phrase

RP(x) x is a 'referential phrase' (the carrier of the
function 'implicit argument’)

[segINP(x) X is a seg-reflexive

[ut]Adv(x) x is the adverb ut

[[ut]Adv]AdvP () x is an adverb phrase consisting only of the

[_[ut]Adv_]AdvP(x)

[...[ut]Adv...]JAdvP(x)

[eINP(x)

head ut

x is an adverb phrase with the head ut, and
possibly other items

x is an adverb phrase with the head ut, and
necessarily also other items

X is a trace of category noun phrase

In order to become operative in automatic parsing, many of these notions need
explicit definitions or characterizations in terms of syntactic structure, linear
precedence, etc. Moreover, the level of analysis represented by these clauses is
one which is relevant for a range of languages, including ones with a less
configurational status than Norwegian and English; this is in accordance with our
remark in 2.1.7. The addition of structurally more explicit definitions and language
particular parameter values will not be entered into here.

18

2. The underlying grammatical concepts

2.22. Templates defined in parsing-level predicates.

The following exemplifies the use of some of the clauses listed above. The
example shows part of that template for the Norwegian verb bruke 'use' which
defines the possible environment where the verb has a subject, a direct object
and a prepositional phrase expressing an application, corresponding to the
English expression 'use...for...". Other environments, such as the one without a
PP, are not covered by this template. (1) is the information in this template
corresponding to what we have called SAF, (2) is essentially what constitutes
the LLF going with this SAF. As the clauses in (1) and (2) are all part of the
same conjunction, and no ordering applies inside conjunctions, the representation
in this language does not formally bring out SAF and LLF as distinct objects -
this is however done in LexScript, from which representations containing
sequences such as (1) and (2) are derived. 'z' is still the entry variable, which is
unified with the identifier (on this notion, see section 7) of bruke (and thus
neither the graphemic, phonological nor any other special representation associ-
ated with the word), and xj is a constituent variable.

(1) ag(x1,z) & NP(x1) & ea(x1,z) & th(x2,z) & NP(x2) &
gov(x2,z) & applic(x3,z) & NP(x3) & P(til) & gov(x3,til) &
pp_arg(til,z)

The first three conjuncts in (1) characterize the subject, the next three the object,
and the remaining part characterizes the til-constituent expressing the applica-
tion. (2) is then the LLF part:

(2) inst(y,z) & sit(y) & y=bruke & agent_of(rep(x1),y) &
theme_of(rep(x2),y) & applic_of(rep(x3),y)

Tep(x)' is read 'the representative of x'; see 2.1.1. The way the roles are entered
in (2) comes close to the first conception of theta-roles mentioned in 2.1.3, to be
made explicit in section 4.

In syntactic parsing application of (1) & (2), the idea is that putative sen-
tence strings to be parsed are represented on the same format as that in (1) &
(2), and acceptance takes place when the string can be unified with (1) & (2). A
full string is accepted when all of its representative clauses have been unified
with clauses residing in lexical templates (constituents like time- and place
adverbials are usually not listed in the SAF of lexical templates; we leave their
treatment in syntactic parsing open here).

19

3. Syntactic frames.

This section addresses the subattribute "Template:SAF', where 'SAF' means
'syntactic argument frame'. In 3.1 we describe the general content of SAF, in 3.2.
we address the phenomenon of derivation with regard to SAF.

3.1. The representation of syntactic argument frames.

The SAF of an entry is a list of the syntactic arguments that the word represented
takes. Words of all major word classes take arguments, and we first describe
how arguments are generally represented.

3.1.1. The constituency of arguments.

As stated in 2.1.4, each argument in a lexical frame is characterized with respect
to thematic role, syntactic category and syntactic function. More formally
speaking, the argument is an ordered triple of elements belonging to these
categories, abstractly thus of the form <R,K,F>. The predicates entered under
role and function are understood as being relations between the constituent in
question and the entry identifier, whereas categories are one place predicates.
The list below shows sample LexScript predicates in these three functions,
together with their interpretation in the terms of the parsing language outlined in
2.2; a full list is given in appendix 1b. As we did in 2.2 and appendix la, we enter
the interpretative predicates in their clausal context, to indicate their valence; as
before, 'x' is the constituent variable and 'z' the entry variable. It will be noted
that most of the LexScript predicates have atomic counterparts in the interpre-
tation language, but not all. We comment later on the status of these exceptions -
see 3.1.2.

LEXSCRIPT PREDICATES
Predicate Comment Interpretation in the
parsing level language
Role (R):
ag ag(x,z)
exp exp(x,z)
th th(x,z)
ben ben(x,z)
dir dir(x,z)

20

3. Syntactic frames

loc

prd

no

inherob

norole

cogob

degprd

wholepart

scsu 'small clause subj',
with intr. verb

tvscsu 'small clause subj',
with trans. verb

Category (K):

np

at_S

seg

pp

ap

p

adv

advp

adv_advp

word_ut_adv
this instantiates
a format used for
all adverbs, and in
turn all categories;
likewise for the
following 3 entries

word_ut_advp
word_ut_advp_excl

loc(x,z)

pred(x,z)
no_role(x,z)
inher_obj(x,z)
no_role(x)
cog_obj(x,z)
deg_pred(x,z)
whole_part(x,z)
AuAvipred(w,v) &
ea(u,w)] (x,z)
{'w' is shared with
the argument with
function ‘predic'}

Audv[pred(w,v) &
th(u,v)&ea(u,w)](x,z)

{'w' is shared with
the argument with function
'predic'}

NP(x)
at clause(x)
[segINP(x)

- PP(x)
AP(x)
RP(x)
Adv(x)
AdvP(x)
[Adv]AdvP(x)
[ut] Adv(x)

[_[ut]Adv_]AdvP(x)
[[ut]Adv]AdvP(x)

21

3. Syntactic frames

word_ut_advp_add [...[ut]Adv...]JAdvP(x)
e [eINP(x)

Function (F):

ea ea(x,z)

gov gov(x,z)

io 10(x,z)

pgov x is governed AAv[Iy[P(y) & gov(u,y)
by a preposition & pp_arg(y,v)1] (x,z)

adv adverbial(x,z)

gen gen(x,z)

incorp incorp(x,z)

attrib attrib(x,z)

lightv lightv_float(x,z)

pa x is governed by the AAv[P(pd) & gov(u,pd)
prep. pd, which itself & pp_arg(pd,v)] (x,z)

heads a pp_arg of z

(this predicate is used
only in the context
<X,np,_>, where X is

not prd)
pp_arg pp_arg(x,z)
predic predic(x,z)
implarg impl_arg(x,z)
refl refl(x,z)

In the LexScript terms, an agent subject of verb w is thus identified as the
ordered triple <ag,np,ea>, in the prolog-readible formalism written

rkf(ag,np,ea),
where 'tkf" stands for 'role, category, function'. It is generally assumed that no two
arguments inside a single SAF can have the same rkf-characterization.

3.1.2. The constituency of a SAF, and illustration of the LexScript predicates.

(1a) is the LexScript SAF for the use of bruke mentioned in 2.2.2, i.e., the frame
'SU bruke DO il NP' ('SU use DO for NP'). (1b) illustrates how the various

22

3. Syntactic frames

predicates in (la) get connected with translations in the parsing language,
yielding (1c), a repeated version of (1) in section 2.

(1) a. SAF: {rkf(ag,np,ca), rkf(th,np,gov), rkf(applic,np,til)}

b. rkf(ag,np,ea):
R:ag = ag(x1,z)
K:np = NP(x1)
F: ea = ea(x1,2)
rkf(th,np,gov):
R: th = th(x2,z)
K:np = NP(x?2)
F: gov = gov(x2,z)
rkf(applic,np,til):
R: applic = applic(x3,z)
K: np = NP(x3)
F: til = AuAv[P(tD & gov(u,til) & pp_arg(til,v)](x3,z)

c. ag(x1,z) & NP(x]) & ea(x],z) & th(x2,z) & NP(x2) &
gov(x2,2) & applic(x3,2) & NP(x3) & P(til) & gov(x3,til) &
pp_arg(til,z)

As we have already said in 2.2, 'z' will unify with the entry identifier, whereas
each xj unifies with the constituent of the SAF-attribute where it emerges. The
example illustrates the possibility of a LexScript predicate having a complex
translation in the parsing language, viz. the item 'til', a preposition whose
appearance in the F-slot signifies 'the NP is governed by the preposition, which in
turn bears the PP-argument relation to the (entry) verb'. More LexScript predi-
cates than those listed above may turn out to have complex translations.

We stress again that these translations serve only as an abstract illustra-
tion of how we envisage a possible connection between LexScript and a parsing
application; thus, in section 7, no formal apparatus for the translation procedure,
including the variable instantiation mentioned, will be presented. In particular, we
abstain here from giving an exact account of how the variable sharing mentioned
in connection with the LexScript predicates 'scsu’ and 'tvscsu' (and likewise 'part’
and 'whole' in appendix 1b) is to be implemented - our assumption is that this will
involve no further apparatus than that of 'dl', just slightly more complex lambda-
expressions than those listed as translations for these predicates.

23

3. Syntactic frames

3.2. Derivational effects at SAF.

As stated in the Introduction, derivational rules, or D-rules, apply with respect to
all aspects of an entry. We here describe the effects of D-rules at SAF, later
sections treat their effects at the other levels.

At SAF, two types of D-rules have an effect: cross lexeme rules and frame
alternation rules.. As an example of the latter, the Norwegian verb spise 'eat' has
a multiplicity of distinct SAFs, including those matching the syntactic frames in
examples such as (2), represented in SAF-form in (3):

(2)

Jon spiser fisken 'Jon eats the fish'

Jon spiser 'Jon eats

b.
c. Jon spiste tennene i stykker ‘Jon ate the teeth to pieces' (in the sense

that the teeth were not directly eaten)

(3)
tkf(ag,np,ea), rkf(th,np,gov)

b. rkf(ag,np,ea), rkf(th,rp,implarg)
c. rkf(ag,np,ea), rkf(th,rp,implarg), rkf(scsu,np,gov), rkf(prd,advp,predic)

We assume that the entry containing (3b) is derived from the entry containing
(3a) by the frame alternation rule 'DO-deletion', whose SAF part is stated in
(4a); likewise the entry containing (3c) is derived from the one containing (3b) by
the frame alternation rule TV-smallcl_AdvP', whose SAF operation is stated (in a
simplified version) in (4b); it will be observed that DO-deletion effects a
replacement of the 'visible' governee from the base form by an implicit argument,
and that I'V-smallcl_AdvP introduces a new governee and a predicative:

(4)
a. rkf(X,np,gov) ->> rkf(X,rp,implarg)

b. 0 ->> rkf(scsu,np,gov), 0 ->> rkf(prd,advp,predic)

Quite often, the specification of the frame of a verb will require listing of
specific words capable of occurring there; this holds of prepositions and direc-
tional adverbs in particular. Such listing may be due to various factors. One is
that the choice of word is completely idiosyncratic, predictable from nothing else.
Another is that the construction (optionally or obligatorily) has a more or less
non-compositional meaning with the word in question, so that, to make an appro-
priate LLF available, a separate template must be defined for this choice of word.
A third circumstance leading to word specification is that even when there may

24

3. Syntactic frames

well be a regular connection between, say, the choice of preposition and the
theta-role signalled by the PP, it is incumbent on the lexicon that it provides the
facts from which such a possible generalization may be drawn. Also in such cases
there should then be specification of individual words in the SAF. All of these
cases call for parametrized rules (cf. 1.3), the parameter in question being the
choice of word. \

The SAF operations of cross-lexeme D-rules are of exactly the same type
as those for intra-lexeme rules - the differences between these types of rules
reside in other attributes, namely 'Cat’ (since cross-lexeme rules often change the
category) and 'Segmental' (since cross-lexeme rules often involve affixation or
vowel change). -

One type of processes which have features of both frame alternation rules
and cross lexeme rules is what we call Incorporation, in Norwegian exemplified
by alternations like tale om - omtale, and male rgd - rédmale: like many cross
lexeme rules, they effect affixation, but the affixed items are not drawn from a
fixed list, but are rather items which can occur as independent items in the SAF
of the stem of the affixation. For this reason, we treat incorporation as a kind of
frame alternation, with the particular feature that the new piece of 'frame' intro-
duced has a syntactic function that we call 'incorp'. As these processes are
particularly sensitive to the choice of word/morpheme incorporated, the D-rules
representing them call for parametrization. As the incorporation phenomenon has
not been treated in full in TROLL yet, however, the rules for incorporation stated
in appendix 3 are so far left non-parametrized.

A near complete list of the intra-lexeme D-rules assumed for verbs in
Norwegian is given in appendix 3a, and a range of cross-lexeme rules are stated
in appendix 3b, both in their prolog readable form. For the intra-lexeme rules,
there is also an informal presentation in appendix 7. In general, establishing a set
of D-rules entails having a set of basic entries, and the list of the SAFs of such
entries for Norwegian verbs is given in appendix 2. The full list of possible
derivational sequences for each type of basic entry is given, for intra-lexeme
verbal families in Norwegian, in appendix 6a, and for cross-lexeme families in
appendix 6b. Parts of these specifications are provided also for German and
Dutch, see appendices 8 and 9. .

(Intra-lexeme) frame alternation D-rules are usually labelled according to
their SAF part, as this is their most salient part (the main exception being the
rules called 'Causativization', which have their name from the LLF operation),
whereas cross-lexeme rules mostly get their name from the LLF operation;
inflectional rules are largely labelled according to their "Minor_cat' effect.

25

3. Syntactic frames

3.3. D-sequences in LexEdit.

For the LexEdit choice of D-sequences of frame-alternation rules, an extra
feature is introduced in the menues of D-sequences. To render more perspicuous
what type of construction a sequence represents, we enter an actual sentence or
VP of the language described as an atomic label for the sequence, as illustrated in

(5):

()
Per spiser maten: [base]
Per spiser: [base | DO-deletion] ,
Per_ spiser_maten opp: [base | DO-deletion [IVsmallcl AdvP]

A full list of such convenience labels is provided in the appendices 6a,b.
Note that the sentence functions as an atomic name, with no internal structure,
with the sole purpose of facilitating the choices in the template menu. The way
arrays like (6) now come into play in LexEdit is as follows.

Upon encountering the verb, the lexicon worker first assigns it a basic tem-
plate, which amounts to making a choice from the list of around twenty basic
templates (cf. appendix 2). The choice is marked by an identifying mark, such as
"TV'. Once such a marking has been made, a menu of the largest possible number
of templates for this type of verb presents itself on the screen. From this menu,
those templates which actually obtain for the verb in question are then marked,
by a clicking procedure. From an interface menu processed in this way, only those
AV-pairs are transferred to LexScript whose representative attribute in the
interface menu has been marked.

The following points may be noted. Where there are multiple alternative
specifications, the line in question gets repeated as many times as necessary. If
further rules 'branch' from the specification point, whether the specification is
consequential or not, a certain amount of combinatorial explosion may result, but
there is no way of avoiding this situation.

In some cases, there may be more than one possible way of analyzing a
construction in terms of derivational history. For instance, whether a construction
like shoot bullets is analyzed by a TV basis template or by a template derived
from an IV basis by Inherent object-insertion, may be difficult to decide at the
moment where a menu is processed. In that case, as far as the specification of the
end. template is concerned, the choice is immaterial, both options leading to a
correct accepting template. There is no need to avoid such situations, even
though they may seem to involve some redundancy, since, for 'robustness' pur-
poses, it may be desirable to have more than one way leading to the right goal.

These remarks have been concerned with the SAF part of templates.
Remarks about LLF and Segmental properties follow below.

26

4. Semantic components of TROLL

4.1. Introduction

The semantic part of TROLL involves three data structure components: LLF
(Lexical Logical Form), CS (Conceptual Structure), and the role part of SAF.
These together cover role and situation structure aspects of meaning. In addition
there is an aspect of meaning which we will refer to as SemProp (Semantic
properties), whose representation is distributed over various of these compo-
nents. Outside the semantics proper is a further component we call SemRel
(Semantic relations), which is a unit both as an aspect of meaning and in the data
structure. This section considers, for each component and aspect except SemRel,
its linguistic content and how it should be represented in the data structures. As
the definitive approach to semantics has not yet been settled upon, the section
will contain more discussion of proposals than the previous one. In the Introduc-
tion, we first make some remarks about the representation of situations, then
give brief initial characterizations of the four components,

4.1.1. The representation of situations.

The notion 'situation’ is neutral with regard to aspectual properties, subsuming
both 'event' and 'state’. A situation is generally thought of as involving some kind
of 'core’ or 'head’ on the one hand, and a certain number of arguments on the other,
carrying roles such as agent, theme, location etc. With this as a very rough
starting point, there are various ways of conceiving the representation of the
situation structure of a given word. Common to all is presumably that it involves
a head, or predicate, corresponding uniquely to the identifier of the entry in ques-
tion. Apart from that, there are at least two principally different views. The first
we have in mind is what we may call the saturational view, according to which
the head is represented as having a certain syntactic valence in the semantic
representation, each valence slot getting saturated by an argument, and neces-
sarily so if wellformedness is to obtain. This view inessence subsumes the
position of Montague's logical representations. The other view, which we may
call the relational view, holds that the head as such generally lacks syntactic
valence in the semantic representation, and thus constitutes a wellformed situa-
tion representation by itself. The argument roles are construed as relations
between the situation and various entities. What corresponds to the status of an
argument as valence-bound in this format is that the role-relation in question is
required to obtain, by a word specific postulate. Thus, where the saturational type

27

4. Semantic components of TROLL

of representation might have a representation for a situation involving the head
like' like (roughly)

sit =like(exp, th),
the relational type will have (roughly)

sit = like & exp-of(x,sit) & th-of(y,sit),
and, if we take 'like' to have obligatorily two semantic arguments, a semantic
account of the illformedness of *John likes on the saturational approach will
crucially involve a syntactically illformed representation like(john)', whereas on
the relational approach, there will be a syntactically wellformed situation repre-
sentation 'sit=like & exp-of(john,sit)', but the extra requirement Ix[th-of(x,sit)]'
defined for 'like' is not satisfied by this representation.

As this contrast is one of formal representation, it is unclear whether it
necessarily couches distinct views of what situations are as such; see 2.1.3
above for remarks tying these views to types of linguistic constructions. We here
adopt the relational approach, and illustrate it in more detail as we proceed, but
postpone any in depth discussion of its over-all advantages. A first extension of it
may be mentioned already at this stage, necessitated by some cases of derived
templates: in such templates it may happen that operator-like items (like 'cause’
in the causative version of a verb like roll) are introduced, and in such cases, the
operand is entered as a complement of the head (see 4.2.2 below). This is the
only circumstance where constellations resembling those used in the saturational
approach will appear. A first illustration of this ‘operator-operand' constellation is
given in (5) below.

4.1.2. The components.

Both the LLF and the CS of a word concern the structure of the instantiator of the
word. The following is the essential difference between them. The LLF of a verb
represents a situation structure of the verb containing only as much as is
expressed in a sentence where the verb occurs, by phonologically realized items
or empty categories of the recognized types. That is, the situation structure Tep-
resented in LLF corresponds to a specific syntactic frame (SAF) of the verb. The
CS of a verb, in contrast, provides all roles - central as well as marginal - that the
verb could conceivably be associated with, or in other words, all roles that a
situation instantiating the verb could conceivably 'contain'. Their formal roles
differ accordingly: LLF is a tool in the construction of a semantic representation of
a sentence where the verb actually occurs; CS acts as a filter on candidate
semantic representations for any sentence where the verb occurs.

The following illustrates how the CS of a verb V will be expressed, with the
representation of situation structure we assume. Suppose that V can be associ-
ated with a set G of roles, G= ({ agent, theme, benefactive}, {time, place, ...}},
where the first subset is the central roles, the other the marginal roles. The CS of
V then has the form (1), in the terms of the 'parsing application' language; 'z' is

28

4. Semantic components of TROLL

the 'entry variable', S1, Sp,.. are central roles, and {R1, Ra,...} is the complement
set to G:

(1)
inst(y,z) — 3@x[S1(x,y) & Ix[S2(x,y)&...& -Ix[R1(x,y)] & -Ix[Ro(x,y)] & ...)

In words, if y is the situation instantiating z, then each of the roles S1, S, ... must
be expressed (whether phonologically or not), and no x can carry any of the roles
R1, Rp,... to y ('x' here ranges over entities of the referential world, not (just)
linguistic expressions). In this way, CS provides the full specification of central
(or 'semantically obligatory'), marginal (‘semantically possible) and semantically
impossible roles, for any word. (Syntactic obligatoriness is accounted for in
SAF.)

In the data structure (LexScript) and in the data loading specification
(LexEdit), the CS of a word consists simply of lists of roles, viz. the central roles
and the marginal ones. ' '

For the description of the functioning of LLF, see the next section.

SemProp is an assembly of properties, partly of the instantiator of the word
in question, partly properties of the representatives of the NPs covered in the
SAF of the word (the type of information called 'Selection features' in Chomsky
65). A presentation of SemProp is given in section 4.3 below. Some inter-
connections exist between the role a given NP can have and its possible
SemProp-features: for instance, in order for an NP to have the role 'experiencer’, it
presumably has to have the feature '+animate'; and in order for a verb to have an
instrument argument, it must have an animate agent (the role 'agent' itself being
neutral - in our terminology - with regard to animacy). The latter dependency can
be stated as in (2), at the parsing language level:

(2) instrument-of(x,y) — Jdz[agent-of(z,y) & animate(z)]

This is a condition which interlinks SemProp and CS. We return in section 3 to
how SemProp features are organized in LexScript and in LexEdit.

SemRel is an assembly of relations in which the instantiator of a word can
stand to other objects. For instance, for a word like leg, SemRel enters objects
(by the words instantiated by the objects) that legs are typically part of, among
others. Little will be said about SemRel in this section, as it seems the
(grammatically) more peripheral of the components, but an outline is given in
appendix 10.

4.2. LLF

The LLF of a word w represents the structure of the instantiator of w. This
structure has the following aspects: 1) the nature of the instantiator (situation or

29

4. Semantic components of TROLL

thing), 2) the head of the instantiator, or its operator-operand structure, 3) the
role relations, and 4) the linking of the role-bearers to arguments of the syntactic
frame of the word. It is the latter which makes possible the identification of role
bearers in an actual sentence. In the data structures, these aspects are organized
roughly as follows:

nature of the instantiator: (sit or thing)

structure of the instantiator: name of the instantiator:
head of the inst.
complement (if any)
role relations

Ilustrations follow as we proceed.

42.1. LLF of non-derived verbs.

In a non-derived template, the LLF is a direct projection of the SAF, the entry
identifier and the category of the word taken together, by a putative algorithm we
may call LLF-transfer. As an illustration, consider the entry for the verb eat,
whose entry identifier we render as 'EAT, short for the complex number serving
as the identifier. The relevant parts of the entry are as follows, with lines indi-
cating specifications provided by LLF-transfer:

(3)

EAT: {

Cat: Vv,

Templ: {
SAF: {rkf(ag,np,ea), rkf(th,np,gov)},

LLF: {
nature: sit
str: sitl: {

head: EAT

role_rel: {
agent_of: rkf(ag,np,ea)
theme of: rkf (th,np,gov)

The LLF specification is here interpreted as follows: The instantiator of EAT is a
situation (sit;), whose head is EAT (i.e., the identifier or an expression corre-

30

4. Semantic components of TROLL

sponding uniquely to the identifier) and whose role relations are ‘agent_of' and
'theme_of", 'agent_of' borne to the instantiator by the representative of the NP
characterized by 'rkf(ag,np,ea)’ and 'theme_of' borne to the instantiator by the
representative of the NP characterized by 'rkf(th,np,gov)’. The algorithm LLF-
transfer functions as follows: The nature specification 'sit' (as opposed to 'thing’)
follows from the category 'V' (further specification of aspectual nature will have to
be provided 'by hand'); the head is identical (or corresponding uniquely) to the
entry identifier, and the components of the role relations are projected from the
rkf-triples in SAF. The role relations are deducible from the role part of these rkf-
triples ('ag' yielding 'agent_of’, etc.). The name of the instantiator derives from the
nature value, by subscripting '1' (the purpose of indexing is discussed in connec-
tion with (5) below, where more than one situation is involved in a structure). In
a clear sense, therefore, the LLF is computable from other parts of the entry
graph. As we will see below, a similar algorithm is definable for non-derived
nouns.

42.2. LLF of derived verbs.

Turning to derived templates, we first consider verbs. In the derivation of a verbal
template from a verbal template, either of two things may happen, possibly in
combination:

1) an operator is introduced, taking the original situation as operand

(a change which conforms with the Persistence Principle stated in
(3) in 1.3);

2) the linking between roles and syntactic functions is altered.

If only the latter takes place, as in Passive or Promotion to EA, the LLF of the
derived template could be constructed from the SAF of this template by LLF-
transfer directly. Things however get more complicated if an operator is intro-
duced. Often, such additions are not accompanied by the introduction of new
morphemes or new head words in the syntactic structure, whereas they typically
are accompanied by the addition of one or more new syntactic arguments. Given
the possibility that the original argument(s) may change its/their syntactic
function, there is then no guaranteed way of predicting, from the resulting SAF
and the resulting operator-operand-structure alone, which of the syntactic argu-
ments are members of which semantic role-relations. Non-ambiguity of the linking
is obtained only if we have access to the previous stage in the derivation and the
derivational rule itself.

To illustrate the point, consider the causativization rule ‘Cause', which
produces templates for sentences like John rolled the stone from templates for
sentences like the stone rolled, i.e. a derivational rule for ergative verbs like roll.
It turns the SAF

{rkf(th,np,gov)}

31

4. Semantic components of TROLL

into the SAF
{rkf(ag,np,ea),rkf(th,np,gov)},
and the LLF with the components
'sit:head:ROLL’ and ‘theme_of: rkf(th,np,gov)’
into the LLF with the components (for specific comments on the status of the
italicized form 'cause', see below)
'sitp:head:cause(sit])' and
‘agent_of: rkf(ag,np,ea)’, this relation being borne to sitj, and

'theme_of:rkf(th,np,gov)’, this relation being borne to sits.

The question is how to automatically determine which of these relations involves
sit] and which one involves sity. Given that links in principle can change, there is
no guarantee that the link from the input template is preserved. This will always
be the situation when a new operator-like predicate is added to LLF, without any
accompanying isomorphic structure arising in the syntax: the role information
provided in SAF then does not specify which element of the semantic operator-
operand structure the role is related to. Hence the mechanism of LLF-transfer is
insufficient for such cases. By retracing the lexical derivation, however, one would
reconstruct which arguments are tied to sity (i.e. the operand), and by elimination
it would thus be clear which arguments link to sity.

The following may be one procedure for building the retracing aspect into the
derivational process itself. Its main point is this: when replacing functional labels
in SAF, then extend the replacement uniformly to LLF. Material inserted in SAF
by the derivational process then links to material inserted by the same process in
LLF. For instance, the template derivation interrelating the SAFs for the two
uses of walk in the horse walked and John walked the horse (i.e., the
causativization rule 'Ea_caus') will have the specification (4):

(4) saf: rkf(ag,np,ea) ->> rkf(ag,np,gov), 0 ->> rkf(ag,np,ea)

The template of the input will be (5a), and by extending the replacement defined
in (4) from SAF to the LLF form, and linking the inserted rkf-element to the
predicate inserted into LLF, we obtain the linking in (5b), as desired; the arrows
indicate the replacements:

32

4. Semantic components of TROLL

(5)
a. WALK: {
Cat: Vv
Templ: {

SAF: {rkf(ag,np,ea)}

LLF: {
nature: sit
str: sitl: {

head: WALK
role_rel: agent_of: rkf(ag,np,ea)

+}

1}

b. waLk: {
Cat: Vv

Templ: {
SAF: {rkf(ag,np,ea), rkf(ag,np,gov)},

LLF: {
nature: sit,
str: sit2: {
head: cause
compl: {
sitl: {
head: WALK
role_rel: agent_of: rkf(ag,np,gov)
}
}
role rel: agent_of: rkf(ag,np,ea)
11

}}
In general, the closest dominating instantiator in the LLF-structure is interpreted
as the instantiator to which the 'agent_of'-relation is borne. The exact formulation
of LLF-operations is otherwise still a bit open, but the impact of the LLF
counterpart to (4) is at least that the part (6a) of the input LLF be replaced by
the part (6b), the remaining alterations being filled in from the rkf-operation, by
the convention mentioned:

(6) a. sity

b. sit: head: cause
compl: sity

33

4. Semantic components of TROLL

The approach clearly guarantees that theta-roles and syntactic functions are
paired with each other in the way desired. We note that as a consequence, the
process of LLF-transfer must be restricted to base templates.

Reflection is needed also concerning the type of items here called operators,
such as 'cause'. The italicized form, as opposed to capital letters, is used to indi-
cate that this item is not inside the template in virtue of matching a morpho-
logically realized item in constructions accepted by the template. It might be
tempting to say that it represents a 'semantic feature'; however, it is possible
that such an item may in fact exert certain syntactic effects otherwise associated
with the relevant morphological item - the operator possible in the representation
of (Norwegian) -bar is a case in point, the choice of preposition (for) being the
same with an adjective ending in -bar as with the adjective mulig 'possible’ (see
appendix 3b). This being so, it is possible that such an italicized form should
really represent an entry identifier, distinguished from those marked by capital
letters only in the negative manner just mentioned (viz., that this item is not
inside the template in virtue of matching a morphologically realized item in
constructions accepted by the template). If that turns out to be the case, we may
in turn probably use the identifier directly, its lack of morphological realization
being clear anyway from its absence from SAF. In the last resort, therefore, the
use of italics here is just a placeholder for a question not yet resolved.

4.2.3. LLF of non-derived nouns.

Our discussion of LLF has so far been confined to templates of verbs, basic and
derived. Turning next to nouns, their templates too may be basic or derived; but
in addition, the instantiator in both cases can be either a thing or a situation. This
section deals with basic templates. Typical LLFs will be as in (7), being part of
the templates for the nouns house and event:

(7) a. LLF: nature: thing
str: thing;: head: HOUSE

b. LLF: nature: sit
str: sity: head: EVENT

The noun event is instantiated by situations, but is otherwise quite different from
nouns like run, attack, etc., which are also instantiated by situations. In LLF, the
difference resides in the latter nouns having a role-structure, event not. (Features
in SemProp might also be used to distinguish the types.) Event on its side can
take complements or appositions expressing a situational content, as exemplified .

in the event of John coming, or Norwegian hendelsen at Jon kom. We leave this

type of constructions aside for the moment.

34

4. Semantic components of TROLL

Not only situations, but also things may have a role structure; book, for
instance, may have the full LLF (8), where X and Y unify with functional labels of
the types relevant with nouns:

(8)
LLF: {
nature: thing
str: {
thingy: {
head: BOOK

role rel: {
Creator of: X
matter of: Yy

Both the choice of BOOK as head and the instantiation of X and Y will follow
exactly the lines of LLF-transfer sketched above, since nouns have a SAF
formally of the same type as verbs, only with partly different functional and
categorial categories. The connections between SAF and LLF are shown in 9):

9
SAF: {
rkf(matter,np,about),
rkf(creator,np,gen),
rkf (ident,np,ea)

LLF: {
nature: thing
str: {
thingl: {
head: BOOK
role rel: {

Creator of: rkf(creator,np,gen)
matter of: rkf(matter,np,about)

An element in the characterization of nouns which distinguishes them from
verbs concerns the function ea: we assume that the ea of a noun is the NP domi-
nating it, that is, the NP whose representative is the entity of which the noun
may be said to be predicated, i.e., the property also characterizing ea's of verbs.
The circumstance that this argument dominates the head of which it is an
argument, sets it a bit apart from arguments in general, but not in such a way as
to exclude it from being counted as part of the SAF of the head. Its theta-role,

35

4. Semantic components of TROLL

moreover, is the most degenerate conceivable, namely ‘identity’. Recall that
theta-roles are construed as relations between the instantiator of the word in
question and the representative of the NP in question. In the case of the ea of a
noun, these are one and the same entity, hence the only role relation obtaining is
is identical to'. Hence we here use simply the label 'ident'. (The peculiar role
status of the ea of a noun has lead some authors to assign it an undefined role RY
this may well be a partial anticipation of our analysis.)

Notice that an NP will be annotated in the syntax for its theta-role relative
to the head of the construction; if it is also to be marked for a theta-role relative to
its own head, there will seem to be a double theta-marking for all NPs. From that
viewpoint, it may seem welcome if no real theta-role need to be marked for NPs
relative to their heads. However, we assume that in the annotation relevant for
syntactic parsing, it is marked explicitly to which head an NP bears the theta-role
in question, hence there would be no inconsistencies. As a noun like attacker, as
will be seen shortly, does assign a 'substantive' role to its ea, it is important that
we are guaranteed against inconsistencies in this way.

As far as LLF-transfer is concerned, the marking of 'thing' under the 'nature’
attribute in LLF cannot be deduced from the category 'N', as this category may
also correspond to 'situation' (in the case of verbs, there is a unique corre-
spondence). Otherwise, in a base template, the label of the instantiator itself will
be the nature label indexed '1", higher indices being introduced explicitly by rules
for embedding instantiators inside instantiators, analogous to the treatment of
'sit.

424, LLF of derived nouns.

We here restrict ourselves to templates derived from verb templates. There are
three interesting types: 1) those nouns whose instantiator is the same situation
as the one instantiating the verbal stem, like the noun attack; 2) those nouns
whose instantiator is a thing, carrying one of the theta-roles defined for the verbal
stem, relatative to a situation of the type instantiating the verbal stem, like
attacker; 3) those nouns whose instantiator is a thing, only morphologically
related to the verbal stem, like building in the sense 'house'. We here consider
the first two cases, first the one where the instantiator is a situation. An example
is the template accepting the noun attack in John's attack on the fish. The input
template will be essentially like (3), represented in (10) (the subscripted 'V' of
the verb identifier ATTACKYy serving only for the contrast with the noun attack,
which will have 'N' correspondingly):

36

4. Semantic components of TROLL

(10)
ATTACKy: {

Cat: Vv,

Templ: {
SAF: {rkf(ag,np,ea), rkf(th,np,gov)}
LLF: {
nature: sit
str: {
sitq: {
head: ATTACKy
role rel: ({
agent_of: rkf(ag,np,ea)
theme of: rkf (th,np,gov)

1}
b}

The instantiator of the noun attack is exactly the same situation as sit] in
(10), the only differences residing in the linking of semantic roles to syntactic
functions. This is induced by the first two clauses of the rkf-derivation (11), which
yields most aspects of the resulting template (12):

(11)
SAF: rkf(ag,np,ea)->> rkf(ag,np,gen),
rkf(th,np,gov)->> rkf(th,np,on),
0 ->> rkf(sit,np,ea)

(12)
ATTACKy: {

Cat: N

Templ: {
SAF: (rkf(ag,np,gen), rkf(th,np,on), rkf (ident,np,ea)}
LLF: {
nature: sit,
str: {
sity: {
head: ATTACKy
role rel: {
agent_of: rkf(ag,np,gen),
theme_of: rkf (th,np,on)

b}

37

4. Semantic components of TROLL

The occurrence of 'sit' as nature value in the LLF is obtained since the deriva-
tional rule in question derives the LLF of the derived template simply as an
identity mapping, modulo the linking between role and function induced by (11).
Notice that the procedure of LLF-transfer is unwanted at this derived stage: that
procedure would put the identifier of the actual word, the noun ATTACKN, as
head of sity, which is clearly not what we want. This point corroborates our
conclusion from above in the discussion of the Caus-derivation, viz. that LLF-
transfer should apply only in non-derived templates.

The second type of derived noun can be illustrated by the noun attacker, as
in the attacker of the fish. Here, the instantiator has the agent role relative to
ATTACKYy, hence the rkf-conversion is confined to (13), producing the SAF of
(14):

(13) SAF: rkf(th,np,gov) ->> rkf(th,np,of)

(14)
ATTACKERy: {
Cat: N
Templ: {
SAF: {rkf(ag,np,ea), rkf (th,np,of) }
LLF: |
nature: thing
str: {
abstr: ag,
body: {

sitg: {
head: ATTACKy
role rel: ({
agent_of: rkf(ag,np,ea)
theme_of: rkf (th,np, of)
}

1}

The LLF of this template is to be read as something like 'x such that x is the
agent of sit], where sit; has the structure ...". The subattributes of 'str' mark the
abstraction constellation, spelled out as such in the 'parsing language'. This
structure of LLF, as well as the nature attribute, are imposed directly by the
derivational rule. In its operation on LLF, this rule, albeit more complex than the
preceding ones, still obeys the Persistence principle, in leaving the internal
structure of sit; intact.

In attacker, the choice of abstracted item is the agent. In attackee, it is the
theme, which is equally well expressible in this formalism. Further uses may

38

4. Semantic components of TROLL

include the manner reading of John's running, with abstraction being made over a
manner argument which will have to be introduced beforehand into the verbal
template; likewise, length in the length of the table will involve abstraction over a
degree argument associated with the adjective long. Hence this second type of
derived rule has a fairly wide applicability. (For further comments on this type of
nouns, see 4.3.1.1.)

4.2.5. Conclusion.

The principal issues in these remarks about LLF have been the general structure
of LLF and its links to SAF, and more specifically the extent to which the LLF
specification can be made to follow automatically from the SAF specification.
Although the discussion has been kept only at a semi-formal level, it seems that
to a large extent, such an automatization of LLF can be obtained. In basic
templates, this automatization involves an algorithm LLF -transfer, in derived
templates, it resides in the generalization of rkf-operations to comprise not only
SAF but also LLF (in addition, of course, come the specific rules whose operation
on LLF is the identity mapping). This automatization by no means renders LLF
superfluous (e.g., lexical decomposition can only be represented there), but it
gives the SAF operations the status as the motor of the lexicon, at least at the
syntactic-semantic level. '

4.3. SemProp

‘SemProp’ is a preliminary label for a potentially large set of factors which need to
be represented in the Lexicon. Its use as a headline here does not imply that
there is a specific component in the data structures carrying this name. The formal
incorporation of these factors in the lexicon is considered as we proceed.

For any word W, there are two types of features falling within the scope of
these considerations: those characterizing the instantiator of W, and those
characterizing arguments defined in the SAF of W. The latter features are called
selection features of W, the former instantiator features of W. There will be one
set of selection features of W for each argument defined in the SAF of W, and
this set of features acts as conditions on this argument, supplementing the
conditions specified in the SAF. In the parsing of an actual sentence, each
argument expression is formally marked for the same parameters of features,
acceptance of the sentence requiring matching values for all the parameters for all
arguments.

Two things are really in question in this section: on the one hand, a set of
salient properties of arguments and instantiators which we want to capture, on
the other hand, the technically optimal set of distinctive features or predicates for
classifying these properties. For the purposes of this exposition, both tasks

39

4. Semantic components of TROLL

serve mainly for illustration of activities integral to the construction of the lexicon
as a going concern; still, to serve as good illustrations, what we propose here
should preferably qualify as possible points of departure for these activities.

In general when considering a domain of notions to be analyzed in terms of
distinctive features, binary features are the usual preference, but the existence of
fields whose arity of oppositions is greater than two is always a challenge to the
construction of a uniformly binary system. What is at stake, though, is more a
matter of aesthetics than of consistency. What we principally want to establish
are predicates such that whenever, for the predicate P, a statement P(x)' is
asserted, its entailments are immediately given. Minimally, -(-P(x))' is entailed
by 'P(x)', and if that exhausts the class of entailments related to the field to which
P belongs, P corresponds to a binary feature. However, when the arity of oppo-
sitions is greater than two, entailment rules must be stated explicitly, to the
effect that also “R(x)', -Q(x)!, etc., are asserted, given that P, Q, R, ... are
members of the same field. This is straightforward enough, but given the formal
simplicity residing in the use of binary features, one naturally sets out looking for
classifications done exclusively in terms of such features, abandoning them only
when too many arbitrary binary predicates need to be introduced to circumvent
the 'more-than-bi'-narity of a field. This is a kind of balancing act that persists
throughout the construction of a classificatory system.

Apart from these considerations, a major purpose of a feature system is of
course that all interesting similarities between various phenomena be repre-
sented by the occurrence of the same specified feature. This is a concern ortho-
gonal to both the idea of just sorting a set of items by as few features as
possible, and that of arriving at a binary system.

In 4.3.1, we outline the system of selection features, and in 4.3.2 we discuss
aspects of the system of instantiator features. Finally, we address questions
concerning redundancy of feature specification, underspecification and entailment
rules (4.3.3).

43.1. Selection features.

As was said above, the selection features for a word W act as conditions on the
arguments of W, supplementing the conditions specified in the SAF of W. The
selection feature parameters are largely the same for all word classes. For
convenience, we here exemplify mainly with verbs. The selection features fall into
two main classes, in terms of the relation between the verb V and a given
argument A:

1) 'V makes requirements concerning the qualitative nature of the
representative of A.

40

4. Semantic components of TROLL

ii) V makes requirements concerning quantitative aspects of the
representative of A, more precisely, on whether the repre-
sentative is a single entity or a set of entities (applicable only
when the representative is countable, of course).

We first consider the most important of each of these types of features, and
then discuss the formal place of representation of selection features.

43.1.1.- The main seleption features.

We first consider type 1) of selectional features.

The basic classificatory concepts used so far pertaining to the qualitative
nature of representatives are 'thing' and 'situation’. A further concept in this area
is 'mass’, a non-countable counterpart to 'thing'. Since situations must be
reckoned as countable, the following binary feature classification suggests itself:

(15) situation: +sit +count
thing: -sit +count
mass: -sit -count

Situations come in at least two varieties: events and states. The latter
notions may - if there are only these two - be characterized as follows:

(16) event: +sit +count -stative
state: +sit +count +stative

Things are generally subclassified into '+animate’ and '-animate’, and once
something is '+animate', a further distinction to be made is '+/~human'. As these
notions all seem linguistically important, they are adopted here.

A further potential distinction to introduce is 'abstract’ vs. 'concrete’. It is
unclear, though, exactly what this distinction amounts to, and which concepts it
subclassifies. Things presumably are subject to this classification, but are
masses too? And are situations? Pinning down criteria clearly exceeds the scope
of this note; and if criteria are not immediately clear, it is a question how fruitful
the factor will be for general use anyway.

The features considered so far all pertain to representatives of NPs. Also
that-clauses, question-clauses and infinitival clauses function as arguments of
verbs. It is possible that they should be characterized as '+sit', but this depends
on one's view about the 'denotation’ of such constructions. Non-arbitrary features
to distinguish between them are also required. It may be noted that these
constructions can readily be given a syntactic characterization which probably is

41

4. Semantic components of TROLL

as fine as any semantic characterization. What we may want, though, are
features which also capture similarities with some of the NPs in semantic
respects, and not just a classification.

In a further classification of complements like that-clauses, features
expressing factivity and implicativeness suggest themselves. Likewise, as the
issue of de dicto - de re is partly lexically dependent, ‘opacity’ features may be
considered. Such a system of features will of course not represent any analysis of
these issues, only a labelling of them, neutral with regard to analysis. As usual,
this is itself a balancing act, since a classification of issues is hardly independent
of what theories one has about them. Still, there ought to be a compromise point
where the putative feature system is both reasonably theory neutral and at the
same time useful for classification purposes.

Turning then to type ii) of features, what we have in mind are features
distinguishing verbs like gather, as in the men gathered or the group gathered,
from verbs like run. We propose that gather in these uses has the SAF of an
intransitive verb, with the subject characterized by the feature ‘+group'. This
feature belongs to an NP if either its head noun is of the type group, assembly,
herd, etc. which we call collective nouns, or if it has plural form. A collective head
necessarily induces the feature '+group’, a plural form only optionally (see (18)
below).

'+group' entails '+count’, both when the NP is plural with a non-collective
noun, and when the head noun is collective. 'Thing' being defined (in features) as
-sit, +count’, it follows that groups of things themselves are things in this defined
sense. As a result, we will not have distinct features for, e.g., a_group of men and
a_group of groups of men, as would be necessary if the group features were to
reflect a type hierarchy. Crucially, no verbs seem to select differently among
these putative type-theoretically different group-NPs.

Notice that by the entailment '+group' — '+count', also NPs with situations
as their representative can have the group-feature. The relevant distinction
between thing and situation is made by other features of the NP.

We may finally mention a type of feature potentially to be adopted. It
pertains to logical form, more precisely, operations of the kind exemplified in (13)
above, involving abstraction over arguments. A verb like exceed, for instance,
may be taken to select NPs expressing degrees as possible subjects, as in the
length of the table exceeds its height. Be elegant, correspondingly, may be said to
take manners as possible subjects, like in John's running is elegant. As exempli-
fied in (13), similar abstraction (we may call it iota-abstraction, as it combines
lambda-abstraction and a definiteness operation) may take place over agent and
theme arguments, but the NPs resulting behave like ordinary 'thing' arguments
selectionwise. However, verbs like exceed and be elegant can also have plain
'thing' subjects (as in John is elegant and John exceeds Bill (with regard to
height) - what they cannot have as subjects are clauses and NPs with situation
interpretation. Hence, it seems that the 'manner’ and 'degree’-NPs under consid-

42

4. Semantic components of TROLL

eration may well be classified simply as things as far as selection is concerned.
This will be our assumption for the present, but further investigation may show
that special degree- and manner-features are called for in selection.

4.3.1.2. Formal representation of selection features.

Consider now the formal place of selection features in the data structures we are
operating with. As they pertain to properties of instantiators, they are clearly
'semantic’ in nature, and as such, the most similar slot of specification so far is
the 'role’ slot of SAF. Let us consider the possibility of really including selectional
features in SAF.

A salient feature of SAF as envisaged so far is its very simple nature - a
triple of atomic predicates. In principle, this atomicity is something we should be
prepared to give up - there appear to be good reasons for substituting at least
thematic roles and major syntactic categories by feature combinations: for
thematic roles, cf. Dowty, Engdahl and others, for major syntactic categories, cf.
€.g., Chomsky, Bresnan and others (for case, see correspondingly Neidle). If so,
the addition of selectional features under the role slot is not so much of a formal
change - the most important difference between theta-roles and selection features
is that thematic roles, or at least some of their decomposing features, are
relations between the head word and the argument, whereas selection features
are properties only of the argument. This, however, is no decisive obstacle to an
incorporation of both types of features under the same slot.

With this move, we similarly open for more complex (read: feature-based)
information to be given under the category and function slots in SAF. For the
purpose of practical classification, it is helpful if a small set of parameters can be
used for a gross first classification, and the triple so far chosen for SAF seems to
serve exactly as such a partitionally effective set. At the LexEdit level, therefore,
the original SAF is significant as a simple structure. Hence, at that level, the
specification of further features may belong to a distinct module. At the level of
the parsing language, there is of course no difference between the predicates
introduced as values in (the classical) SAF and those introduced in the extra
module, and our suggestion is that also in LexScript, the fullfledged SAF has the
form of a set of values, one of the values being the one entered in the SAF-slot in
question in LexEdit, the others being those from the additional module. For
instance, the 'role’ slot of the SAF defining the subject of a verb like gather may
look something like the following in the LexScript data structure (see 4.3.3 on the
notion 'family' and the use of '<-"):

43

4. Semantic components of TROLL

(17) semantic properties: {
theta-role: agent
family I: +count <¢-+animate
family II: +count ¢« +group

Coming from the LexEdit SAF is 'agent', whereas the attributes 'family I' and
family II' come from the extra module of LexEdit, this module being essentially
what we have so far called ‘SemProp'. That is, SemProp, at least in its selectional
aspect, may be viewed as a module on its own only in LexEdit, not in LexScript.

4.3.2. Instantiator features.

In the LLF of a word, the nature of its instantiator is marked by a specific
attribute, as seen throughout section 2. The 'nature' values used there are 'thing'
and 'sit'. As these labels are also used as abbreviations for feature combinations,
as suggested in (15) and (16), it is reasonable to interpret them the same way
when occurring as values of the nature attribute. That is, we want to say that for
any word W, its instantiator features are those which occur as values of the
attribute nature in the LLF of W. Thus, just as we considered selection features
as possibly belonging to the SAF specification, instantiator features belong to
LLF. Both parts of what we have provisionally called ‘SemProp' thereby become
formally part of independently established components in LexScript.

It follows that the array of possible values under 'nature' is somewhat larger
than envisaged so far, but not principally different. We now address some of
these values, first for nouns, then for verbs, and then return to the formal repre-
sentation of these features.

4.3.2.1. . Main instantiator features.

The instantiator features of nouns are largely the same features as those which
characterize NPs. In X-bar terms, this follows since NPs in general inherit their
features from their head noun. In semantic terms, it follows since the instantiator
of a noun is identical to the representative of the NP headed by the noun.

There is only one apparent exception to this pattern, namely the use of the
feature "+group', which occurs only at NP level, reflecting either plural form or the
characterization '+coll(ective)' of the head noun. In the latter case, '+group' and
'+coll' amount pretty much to the same thing, so the exceptionality resides only in
the plural case. Formally, these correspondences are regulated by the following
entailment rules applicable at NP-level:

(18) +group — (+coll v +plur)
+coll — +group

44

4. Semantic components of TROLL

Semantically, the discrepancy is understood as follows: in five men, the instan-
tiator of men is a singular man on both the group and the non-group (also called
distributive) reading. On the latter reading, this is also the representative of the
NP. If the NP has a group reading, it is this group which is the representative of
the NP. The instantiator of men then only provides the 'content' of the group; but
this, after all, is a significant part of its characterization, and no really unmoti-
vated violation of the general pattern of identity between N-features and NP-
features.

Needless to say, a noun has both instantiator features and selection
features, the latter being the characterizations of the arguments defined in the
SAF of the noun.

Turning then to verbs, what act as their instantiator features are essentially
what are commonly called aspectual features. Such features will reflect properties
like 'stative','dynamic’, 'punctual’, 'durative', and the like. This is not the place for
proposing a full set of aspectual features, so we leave that task open, noting only
that - like for noun instantiator features - they will be represented under the
nature attribute of LLF, the feature '+sit' thereby being supplemented by the
aspectual features.

In the treatment of derived nouns, the Persistence principle for LLF will
predict that the nature values be carried over from the verb to the noun, aspectual
properties of a situation-denoting noun thus reflecting those of the verb it is
derived from. It remains to be investigated to what extent such correspondences
really obtain, and in case, whether they are so reliable that they can serve as
basis for default mechanisms for generating lexical specifications. '

4.3.2.2. Location of representation of instantiator features.

Let us now turn back to the issue of where the instantiator features be repre-
sented, assuming that the nature attribute of LLF is such a place. For nouns - as
we have mentioned - the instantiator is identical to the representative of the ea,
hence whatever feature characterization is supplied under LLF:nature should also
appear in the semantic part of the specification of ea in SAF, given the extension
of SAF proposed in 4.3.1.2. (For the purpose of a reference to be made shortly,
let us refer to this duplication as ea-duplication.) For verbs, the instantiator is
not similarly represented in SAF, hence no such duplication will obtain for verbs.
For both categories, however, there is another possible duplication of the instan-
tiator features to be considered: for various purposes, it may be desireable that
the word is syntactically annotated for the features in question. For verbs, it may
be that aspectual features play a syntactic role and hence ought to be represented
in the structure assigned to a sentence in connection with parsing. For nouns, our
proposed treatment of selection features presupposes that NPs are somehow
annotated for selectionally relevant properties, and as these properties largely

45

4. Semantic components of TROLL

reflect properties inherent to (the instantiator of) the head noun of the NPs, it
would seem reasonable that the semantic features of an NP are induced by
percolation from the head. But if so, the noun has to have these features
annotated on it in the first place.

For the latter case, an alternative to syntactic percolation might be sought
in the ea-duplication mentioned above: once a noun N functions as head in an NP
M, the feature characterization of M would be induced as a selectional require-
ment on the part of N. Even on such an approach, though, the phrase-head
relation has to be marked in the syntax, and given general assumptions about
percolation along the head projection, the features in question would eventually
end up as annotated on the noun itself anyway.

On any account, then, it seems that words must be annotated for various
features, identical to those occurring as value of LLF:nature. Where in our data
structures would such an annotation fit in? The most plausible place is presum-
ably 'Cat(egory)', whose atomic value posited so far will yield to sets of features.
More precisely, this attribute should have various subattributes, e.g. as follows:

(19) Cat: {
major syntactic features: ...
minor syntactic features: ...
instantiator features: ...

}

The split into major and minor syntactic features is motivated independently, but
in view of that refinement, the introduction of semantic features is not as drastic
an innovation as might seem first. (The situation is analogous to what we argued
for the category information in SAF.) Notice that this sharing of instantiator
features for a verb complies with what we suggested in section 2 about LLF-
transfer, the only difference being that we may now say that the triggering of the
nature value 'sit' by the major category features is something happening under the
Cat attribute. In this respect, the contrast with nouns is the same ('N' not
predicting whetherit should be 'thing' or 'sit").

The next question is then: if the same information is to appear in three
separate places in the entry for a noun, and two for a verb, is any of these places
to count as prior in any sense? Given that this duplication is induced by value-
sharing, there is no real issue here - in LexEdit, there should be a module simply
called 'Instantiator features', and the specification made here is supplied
automatically in all the relevant places.

46

4. Semantic components of TROLL

4.3.3. Entailment and relevance relations, and underspecification.

In this section we reflect on questions concerning 1) entailment and relevance
relations between features, and 2) the circumstance that some words may be
unspecified with regard to certain properties whereas others are not.

The feature '+human' entails '+animate', whereas '-human' does not: one
may well characterize e.g. a mountain as being -human'. Still, the feature -human'
does not seem relevant unless the object to be characterized is +animate, and we
may want to restrict its use in classification accordingly. To visualize, we may
contruct 'relevance trees', where the root of each subtree limits the relevance of
the daughter nodes. Thus, the features under consideration would come out in the
configuration (20):

(20)

+animate

N

+human ~human

The specification of items in terms of features may vary from one item to
another; for instance, whereas think requires of its agent that it be animate,
destroy does not (in our sense of ‘agent’). So, it will seem reasonable to leave
destroy unspecified with regard to the feature '+/-animate’, as far as the subject is
concerned. The noun occurring in the subject of destroy may be more specific in
this respect than the verb: stone, for instance, is '-animate’, beaver is +animate.
When words of different specificity combine in a sentence, what happens?
Clearly, both the stone destroyed the car and the beaver destroyed the car are
possible. One thing that we clearly want to avoid is that the absence of a
requirement '+animate' on the subject in the frame of destroy should result in the
feature '-animate' being interpolated and thus blocking the sentence the beaver
destroyed the car. One way of avoiding this would be to - after all - give destroy
many alternating complete specifications. Doing this from scratch would be
cumbersome and perhaps unintuitive. A better option would be to have the lexical
specification itself underspecified, as envisaged, but have an expansion procedure
for underspecified matrices which would follow relevance trees. In that way,
negative features would not come in in an uncontrolled manner, but only in
accordance with the relevance hierarchies.

For the parsing and interpretation of the sentences mentioned, one expan-
sion of the subject matrix for destroy would then yield '+animate' as an accepted
feature, another '-animate', both sentences thus becoming accepted. In connection
with the general entailment (2) mentioned above, repeated,

(2) instrument-of(x,y) — Jz[agent-of(z,y) & animate(z)]

47

4. Semantic components of TROLL

we would in turn predict the illformedness of *the stone destroyed the car with its

weight (in an instrumental sense), as opposed to the wellformedness of the
beaver destroyed the car with its tail: in the former case, (2) requires the expan-
sion where the subject of destroy has the feature '+animate', contradicting the
inherent specification of stone; in the case with beaver, no contradiction arises.

It is of course essential that an entailment like -human — +animate' is
restricted to hold only for the expansion of lexical feature matrices - it is clearly
not true in general.

A different type of completion rule can be illustrated with a noun like stone,
marked '-animate'. No relevance tree descends from this feature, but there still
should be a default value for the feature '+/-human' which will be -human', and
hence the application of an entailment '-animate — -human' (the exact opposite of
the (contraposition of) the above relevance rule). Let us call this a negative
completion rule, as opposed to the relevance completion rules considered first. A
negative completion rule could apply either in the parsing representation or in the
lexicon, in the latter case after the relevance completion rules.

The representation of underspecified feature-matrices in LexScript and

LexEdit can now be partially envisaged as follows:
Features are clustered together in various families of relevance relations, where
a family consists of all nodes in a tree built up of subtrees like the one in (18).
Given the varying need for underspecification, and the desire to keep the
dimension of specification within the relevance dimension, one way of specifying
words with regard to features is to specify paths in relevance trees, from a shared
root and as far down as the word in question extends its specification. For the
subjects of the verbs think and destroy, thus, the specifications for the feature
families in question could be as in (21a,b) respectively; for the instantiator speci-
fication of stone, correspondingly, the characterizing path would be (21c); 'A<-B'
means ‘B is a relevance daughter of A"

(21) a. think: +count < +animate
b. destroy:
c. stone: +count < -animate

In the parsing language, the line (21a) corresponds to ‘count(x) & animate(x)'.

In LexEdit, the feature specification would now take the form of making
choices from a menu of relevance paths like those in (21). (Suitable attribute
names could be introduced for these paths.)

Each path is then automatically expanded for all available relevance paths,
by relevance completion rules. Subsequently, negative completion rules apply. To
illustrate, the paths in (21) are expanded to those in (22), products of negative
expansion being indicated by italics: '

48

4. Semantic components of TROLL

(22) a. think: +count < +animate ¢« +human
+count < +animate ¢ -human
b. destroy: +count ¢ +animate < +human

+count < +animate < -human

+count < -animate « -human

-count « -animate < -human
C. stone: +count ¢ -animate < -human

4.3.4. Conclusion.

The main conclusion about SemProp as a type of information is that it is
expressed essentially in terms of binary features, and that it is found under
various subattributes of existing components in the data structures: the selection
features of a word W occur as a value of a subattribute of the role attribute inside
each rkf-triple of the SAF of W; the instantiator features are expressed as the
value of the nature subattribute of LLF, and also as the value of a 'semantic'
subattribute of Car. The exact inventory of features, even for the purposes of a
first illstrative version, remains to be established, ‘although some of the more
important ones have been considered. '

4.4. Summary.

This section summarizes all of the preceding proposals as far as the organization
in LexScriptis concerned, and makes also proposals on how the various types of
information be treated at the LexEdit level.

4.4.1. Organization of semantic information in an entry in LexScript.

(23) is a survey of the organization of the entry of an intransitive verb, with the
elements of semantics discussed above indicated in italics. Shared values are
indicated by boldface variables (assume that the template is a base template):

49

4. Semantic components of TROLL

(23
Id: {
Cat: {
Major cat: Vv
Minor_cat:
Inst_ feat: x
}
Segmental:
Template: {
SAF: {
ea: |
R: {
role: y
select feat:
}
K:
F:
}
}
LLF: {
nature: x
str: {
z: {
head:
compl:
role rel: y(ea,z)
}
}
}
cs: |
centr roles:
marg roles:
}
} /
Sem rel:

For an ordinary, non-derived noun (like stone), the schema is as in (24), differing
from (23) only in the value-sharing between the ea of SAF and nature, and in the
lack of role relations tied to the ea (as noted in 2.3, the only relation here is the
degenerate one of 'being identical to', holding between the instantiator of the noun

and the representative of the ea):

50

4. Semantic components of TROLL

(24)
Id: {
Cat: {
Major cat: N
Minor cat:
Inst_ feat: x
}
Segmental:
Template: {
SAF: {
ea:
R: {
role: none
select feat: x
}
K:
F
}
1
LLF: |
nature: x
str: |
id: {
head:
compl:
role rel: none
}
}
}
cs: |
centr roles:
marg roles:
L
1
Sem rel:

4.42. Semantic information in LexEdit.

In general, the only templates where semantic information is to be encoded are
basic templates: most of this information is persistent through derivation, and
whenever derivational processes do involve a change in the semantics, this is
stated in the derivational rule itself.

As for the specification to be done in basic templates, we argued in section
4.2 that most aspects of LLF are deducible from information present in SAF and
Cat:major_synt - from section 4.3, it is clear that the only exception is the full
feature specification of LLF:nature (for verbs, the feature '+sit' follows from V',
but not the aspectual features), i.e., the insrantiator features. Likewise,
selectional features hardly follow from the rkf-specifications defining basic
templates. For any word W, therefore, once its basic template has been identified
(in the LexEdit process), there ought to be one menu for the instantiator features

51

4. Semantic components of TROLL

for W and one selection features menu for each argument defined in the SAF. The
instantiator feature menu may be tied to the path Caz: inst * feat:, for the selection
of values, which are then shared with the other attributes receiving these values
(cf. (23) and (24)). To specify the selection features, one has to go into each rkf-
triple in SAF, calling the menu at the value point of R: sel _feat:. Since the options
to be defined in the menu are partly implicatively related to the K value and
Rirole, it would be advantageous if these entailments could be made induce an
automatic choice among possible menus.

In the design for SAF specification as conceived so far, there are two
possible procedures: choice among a finite set of basic templates, and speci-
fication of a small number of parameters defined for each template, most typically
allowing for choice of preposition in the F-slot of some argument. It is possible
that the specification of selection features could be brought on this latter form as
well, each basic template thereby having one selection feature parameter for each
argument. If so, the lexicon worker will not have to represent the template as
such on the screen. On the other hand, the number of parameters for each
template may then grow a bit big to handle.

52

S. Segmental properties.

This section focuses on the information appearing under 'Segmental’, in interplay
with 'Cat:Minor_cat'. Like the preceding section, this section presents proposals
more than decisions made and executed; in particular, phonology is so far poorly
developed. We recall the over-all organization of entries of verbs, nouns and
adjectives as shown in the schema (1):

(1)
Id: |

Cat: {
Major cat:
Minor cat:
Inst_feat:

}

Segmental: {
Morphon:
Morphgraph:

}

Template: {
SAF:

- LLF:
CS:
}

Sem rel:

}

The attribute 'Segmental' (for 'Segmental properties') assembles those properties
which pertain to the segmental manifestation of the entry. 'Morphon' gives
morphophonological information, and '"Morphgraph' displays the ortographic
counterpart of the latter. In the following, we discuss Morphon, and to some
extent Morphgraph, in their interplay with Cat, in particular Cat:Minor_cat.

Typical examples of the kind of values that sort under Minor_cat are values
of parameters like gender, number, person, etc. For the moment we leave open
whether such property parameters are to be described in terms of binary features
or something else: for short, we use the term smallest specification unit (8SU)
for the fixation of a value within such a parameter, whatever form it may take.
Thus, a specification like the standard '[3rd person, sg., past]' of an English verb
may be seen as an informal instantiation of a Minor_cat specification of the form
{SSUperson, SSUnumber, SSUtense }, Where the SSU in each case fixes a value.

Given the principle that there is one entry for each type of occurrence of a
word, and that entries for inflected forms are derived from entries for forms
unspecified for the properties in question, there is in principle one D-rule for each
SSU of a word, with one exception to be addressed shortly.

Words of a language may vary as to whether a given SSU is manifested
segmentally or not (be this by affixation, vowel change or whatever). SSUs can

53

5. Segmental properties

thus be classified as segmental and non-segmental, and the D-rules inducing the
SSUs may correspondingly be classified as segmental or non-segmental.

Moreover, within a given language, it may happen that one segmental factor
(an affix, or a vowel change or whatever) encodes more than one SSU. Such a
factor we call a multiple segmental factor, as opposed to a singular segmental
factor, which encodes only one SSU. Rules inducing these factors may corre-
spondingly be called 'multiple segmental D-rules' and 'singular segmental D-
rules’, respectively.

Segmental factors with a certain constance both with regard to place within
words and quality will be called morphemes. Morphemes split into two classes
(according with traditional views): root morphemes and function morphemes, the
latter comprising encodings not only of 'inflection' SSUs, but also of 'derivational'
(in the traditional sense) SSUs. All morphemes have an identifier, which is to
say that also function morphemes are identified by a set of attributes, and not,
e.g., by phonological form alone. In accordance with tradition, we allow a
morpheme to have various segmental forms, called allomorphs. These are listed
under 'Morphon' of the morpheme as values of the subattributes 'Alloform1’,
'Alloform?2’, etc. A special type of allomorphs are those with zero segmental form,
or manifestation through vowel change or the like. These are borderline cases of
allomorphs, since they are not of a type that would count as establishing a
morpheme by themselves: they count as allomorphs of morpheme M only because
other segments qualify as establishing M, and once a given SSU (or assembly of
SSUs) is reckoned as being realized by M, we take this SSU always to be
realized by M, even when this amounts to assigning M a 'zero-allomorph'.

As alloforms we do not include variants determined by phonological
processes: defining the set of alloforms of an item therefore presupposes that the
range of phonological processes of the language is already defined.

To discuss the operation of D-rules on Minor_cat and Morphon, some
further terminology is useful. In the operation on Morphon, let the segmental
representative of the input entry be called the host element (H), and the
morpheme added, if any, be called the guest element (G). (This distinction cuts
across the distinction between 'head' and 'attribute’: a guest morpheme repre-
senting a cross lexeme derivation is commonly counted as head of the derived
word, whereas an inflectional G morpheme is not. On the other hand, 'host' and
'stem' seem to be equivalent notions.) The following main types of operation on
Morphon and Minor_cat can now be distinguished. Assume an operation O,
which induces the SSU (or set of SSUs, if O is a multiple segmental rule) F in
Minor_cat. The result R of the part of the operation O which applies to Morphon
can then be as follows:

(2)
a. R does not involve a guest morpheme. There are two subcases:
1. R equals H; that is, O has no segmental effect. 2. H undergoes

54

5. Segmental properties

a vowel change or some other (non-phonologically conditioned)
effect which does not represent a morpheme by itself.

b. R does involve a guest morpheme G. This means that specified
allomorphs of H and G concatenate (with whatever phono-
logically conditioned effects that may have). A special subcase is
where the guest morpheme G has a zero or vowel- alternation
alloform (cf. the remarks above): the segmental operation on H in
such a case is of one of the types that arise under a, and not
concatenation.

At the graphemic level, the same points apply, except that no phonological
processes can be invoked to account for variation. Thereby the number of allo-
forms will be larger at this level. (Reductions may be possible to the extent that
spelling mirrors phonological representation; the availability of such mirroring will
vary from language to language.)

At the Morphon level, H and G are represented in phonological form. Given
the Cat information going with each of them and with R, a morphologically
annotated phonological representation is then constructible for R, to which
phonological processes and/or principles of the language will apply. Call this
representation MorphonRep. From MorphonRep, a phonetic representation of R
is thereby derivable.

Presumably, MorphonRep should have the possibility of being invoked as
part of Morphon itself, since certain information which refers to morphological
(i.e., Minor_cat) structure is word idiosyncratic, and thus requires to be present
in Morphon. Examples are likely to obtain in the area of stress placement and
choice of tone in Norwegian. This means that Morphon possibly should contain
not only information about H and G and a label for the type of process combining
them, but also MorphonRep itself, as input to specification of stress and tone
when these are not predictable. As a placeholder for this possibility, we include a
subattribute 'MorphonRep' under Morphon, without going into the question of
how it is to be operated on to yield the suprasegmentals of R. This subattribute
will serve also in the characterization of root morphemes.

To illustrate these suggestions, we show, somewhat schematically, the
derivation of the neuter sg. inflected Norwegian adjective blitt 'blue’ from its base
form bli, where we assume the neuter sg. affix t to be a morpheme on its own,
i.e., a morpheme encoding two SSUs. (3) is the entry of the base form bla, (4) the
entry of the affix, (5) the entry of the derived form blédtt, and (6) the D-rule
responsible for the change, here called 'Neuter_sg'. Some comments follow
below.

55

5. Segmental properties

a vowel change or some other (non-phonologically conditioned)
effect which does not represent a morpheme by itself.

b. R does involve a guest morpheme G. This means that specified
allomorphs of H and G concatenate (with whatever phono-
logically conditioned effects that may have). A special subcase is
where the guest morpheme G has a zero or vowel- alternation
alloform (cf. the remarks above): the segmental operation on H in
such a case is of one of the types that arise under a, and not
concatenation.

At the graphemic level, the same points apply, except that no phonological
processes can be invoked to account for variation. Thereby the number of allo-
forms will be larger at this level. (Reductions may be possible to the extent that
spelling mirrors phonological representation; the availability of such mirroring will
vary from language to language.)

At the Morphon level, H and G are represented in phonological form. Given
the Cat information going with each of them and with R, a morphologically
annotated phonological representation is then constructible for R, to which
phonological processes and/or principles of the language will apply. Call this
representation MorphonRep. From MorphonRep, a phonetic representation of R
is thereby derivable.

Presumably, MorphonRep should have the possibility of being invoked as
part of Morphon itself, since certain information which refers to morphological
(i.e., Minor_cat) structure is word idiosyncratic, and thus requires to be present
in Morphon. Examples are likely to obtain in the area of stress placement and
choice of tone in Norwegian. This means that Morphon possibly should contain
not only information about H and G and a label for the type of process combining
them, but also MorphonRep itself, as input to specification of stress and tone
when these are not predictable. As a placeholder for this possibility, we include a
subattribute 'MorphonRep' under Morphon, without going into the question of
how it is to be operated on to yield the suprasegmentals of R. This subattribute
will serve also in the characterization of root morphemes.

To illustrate these suggestions, we show, somewhat schematically, the
derivation of the neuter sg. inflected Norwegian adjective blatt 'blue’ from its base
form bl4, where we assume the neuter sg. affix t to be a morpheme on its own,
ie., a morpheme encoding two SSUs. (3) is the entry of the base form bl§, (4) the
entry of the affix, (5) the entry of the derived form blitt, and (6) the D-rule
responsible for the change, here called 'Neuter_sg'. Some comments follow
below.

55

5. Segmental properties

(3)
blazig: |
Cat: {
Major cat: A
Minor_cat:
Inst_feat: x
}
Segmental: {
Morphon: MorphonRep: /blo:/
Morphgraph: bla
}
Template:
Sem rel:
}
(4)
t6013: {
Cat: {
Minor cat: neuter, sg
}
Segmental: {
Morphon: MorphonRep: /t/
Morphgraph: {
Alloforml: t
Alloform2: tt
}
}
}
)y
blatti194: {

Cat: {
Major cat: A
Minor_cat: neuter, sg
Inst_feat: x
}
Segmental: {
Morphon: {
Concat: {
Host: blazjg:Segmental :Morphon
Guest: tgp13:Segmental:Morphon
}
MorphonRep: .
Morphgraph: Concat: {
Host: bla3zig:Segmental:Morphgraph

Guest: te013:Segmental :Morphgraph:Alloform?

}

}
Template:
Sem rel:

56

5. Segmental properties

(6) Neut_sg:

a. Cat:Minor_cat: @ — neuter, sg.

b. Deriv:Hist: @— ++Neuter_sg

c. Segmental:Morphon:Concat:Guest:@ —

+t6013:Segmental:Morphon:MorphonRep

d. Segmental:Morphgraph:Concat:Guest: @ —
+t6013:Segmental:Morphgraph: Alloform1
Condition: Host does not end in vowel or dental.

e. Segmental:Morphgraph: Concat:Guest: @ —
+tp13:Segmental:Morphgraph: Alloform2
Condition: Host ends in vowel or dental.

f. Template: Identity

Phonologically, blitt has a short vowel and geminate consonant, facts we take to
be induced by phonological rules. In this respect, the graphemic form might seem
derivable from the derived phonological form; however, there is no principle that
spelling reflects derived phonological form. For instance, the neuter sg. form
written svart 'black’ ends phonologically with a (derived) retroflex, which is not
reflected in spelling.

The phonological representations are given with classical phoneme notation,
which is merely a matter of choice for ease of the exposition. The real choice of
phonological formalism is open for the present.

For the treatment of inflection, two further steps are taken relative to what
is shown above. First, classes of words can be distinguished on the basis of
which alloforms they choose for the various inflectional rules. The most efficient
way of marking choice of alloforms is therefore, in the data structure, to use allo-
forms as highest attribute of the rules and code classes of rules by the alloforms,
codes which in turn are used to mark the class of inflectional variants chosen by
the word in question.

Second, since all words of a given frame alternation family take the same
inflections, except for passive forms, the most economical way of inducing the
right inflections is by forming cross-products of frame alternation families and
inflection paradigms.

Both of these points are reflected in appendix 4, which gives the treatment
of inflection for Norwegian verbs, nouns and adjectives.

57

6. LexScript

6.1. Introduction

LexScript is an independent component of TROLL, both as a project and as a
system (cf. 1.1). The purpose of the project is to construct a language capable of
holding the information onewants to put into a linguistic electronic lexicon. The
language - LexScript - will be specifically geared to its domain of application, and
is not to be regarded as a general programming language for specification of
general algorithms. The construction and the model of execution of the language
put key importance on the way a linguist will want to describe grammatical
relations.

Any programming language consists functionally of components of a certain
type put together in some control structure. For standard languages like Pascal
and C, the components are instructions which are performed sequentially. The
programmer decides himself when and where a clause is to be executed. For
languages like Prolog, the components are clauses which are tested (executed) in
a control structure defined in advance. The aim of LexScript as a language can be
illustrated by the following comparisons:

For the standard languages the domains are algorithms, and the languages
are designed such that algorithms can be easily expressed (e.g., Sedgewick
1983). : ' ' ’

For Prolog the domain is logical deductions, and the language is made such
that one can easily express logical connections and have them evaluated. The
general mechanism which is 'divided out' is the resolution mechanism, which is a
general method for proving statements in 1st order predicate logic (e.g., Lloyd
1984). Resolution is what holds the components in Prolog together and gives
them meaning. '

For LexScript the domain is lexical information. The aim is to 'divide out'
what is general about lexical connections, i.e., to find a general procedure by
which components transfer information between each other, and use this proce-
dure as a control structure. A central notion in this connection is lexical
derivations. A first approach to this notion is made in the present section,
especially in the parts addressing the hierarchy operator '++', viz. 6.3-6.5 below.

In addition to the functional part of LexScript comes its syntax, i.e., the way

the components are written or specified. This is also a topic of the present
section. It should be noted, however, that many of the symbols actually used

58

6. LexScript

(such as parentheses and operators) are dictated by the implementation context
for LexScript, viz. Prolog.

LexScript is designed not only to describe a full lexicon, but also to take part
in the development of lexica, i.e., it is a developmental tool as well. As such, one
type of concern is its relation to the actual implementation environment - usually
this environment is independent of the specification of programming languages
(one exception being SmallTalk, which puts heavy restrictions on both machine
and system, e.g., graphic screen and mouse control), and this holds for LexScript
as well so far, even though TROLL is developed on machines with highly
developed graphic interface (Apple-Macintosh).

At the content side, an important factor for the role of LexScript as a
developmental tool are the possibilities of specifying choices. LexScript will
contain a mechanism for specification of parametrized objects, where the
parameters are chosen during the construction of a given lexicon. For instance, an
object x is to be associated with a complex property P parametrized over the
variable Q. The following situation is then typical: for a large part of objects with
the property P, Q will have the value g, but in many cases it can take the values
41, - qn. It 1s a requirement on LexScript that it be possible to describe
parametrized properties containing this information. For examples of an approach,
see appendices 3a and 3b.

6.2. Basic structures.

A lexicon L can informally be described as a tuple <D,S,I>, where D is the de-
scription of L, S is the structures of L, and I is the linguistic interpretation of L. D,
S and T are related so that S is dependent on D and I is dependent on S. That is,
the level D describes the structures in S, and the elements of S determine the
linguistic interpretation I

It follows from this that the linguistic content of the lexicon is solely deter-
mined by S; the way the structures are described (=D) has no direct effect on the
interpretation. However, D, being the level where the operations on L are defined
and implemented, is the level of intentionality. It contains the information about
how the lexicon will develop over time. If one wants to change something within
S, the change is actually made to D.

The level S is a collection of attribute value graphs. Graphs together with
the operation of unification are well suited for specifying a database:

* They make it possible to prepare separate parts of the database
for later assembly. A graph can be ripped apart along its
attributes and reassembled with unification.

« Database entries can be of varying size.

59

6. LexScript

¢ They have a natural question-answer structure, viz. <attribute,
value> = <question,answer>.

How attribute value graphs are implemented and put to use in the lexicon is
described in the following sections. Here we say something about the system
within which the lexicon is embedded.

The lexicon is implemented in prolog in such a way that all the text speci-
fying structures are in a prolog readable form; that is the expressions are parsed
by the prolog system itself and not by some program written in prolog. Even
though LexScript is supposed to be self contained with respect to operations and
datatypes it is impossible (and impractical) to have a full fledged system to work
with in the development of the lexicon. The embedding of LexScript in a prolog
environment enables us to have parts of it fully implemented (i.e., interpreted by
prolog clauses) while other parts are defined in prolog where their functionality
can be tested.

In the following, keep in mind that LexScript is not fully developed, and
some effects of particular mechanisms may be effects of other mechanisms in the
future.

6.3. Structuring the Lexicon

The lexicon is conceptually organized around entries, derivations, and other
objects with their operations. The collection of entries is relatively large in
number, numbering in thousands, while the derivations are comparatively small,
in the hundreds. The entries are built up using derivations and other objects.

Given the relatively large number of entries, it has been a goal to try to keep
their structure simple. In the case of Troll, simplicity means that the information
flow between the constituents in an entry is determined by the way they are put
together. The constituents themselves have very little "knowledge" of the
context they are in. That is, they have little or no oppurtunities for explicitly
referring to remote places in the entry where they live, they must act on what is
given to them, so to speak. Constructing the lexicon with this goal in mind
creates entries which are easy to edit and maintain. The formal structure of
entries is described in section 6.4 below. In the following subsections the basic
constituents and mechanisms for building entries are described.

The lexicon is formally built up around the following objects:
atoms, numbers, strings, variables, and sets with the important
special case graphs.
These objects are described, in turn, below, together with their associated
operations and variants.

60

6. LexScript

6.3.1. Atoms

Atoms are used as references and for attributes; they are specified the same way
prolog atoms are, so that an_atom and 'ATOM' are atoms. Typically, they will
either stand for themselves or be interpeted as symbols referring to something
else.

6.3.2. Numbers

Their main purpose in the lexicon is to uniquely identify entries; i.e., they serve as
a kind of "social security" number for them. A number is sequence of digits ie. 10,
1001, 314 are numbers.

6.3.3. Strings

Strings are specified within double quotes so "a string" is a string. They are used
to describe words, and combinations of words. Strings have certain operations
defined. These include:

* concatenation indicated with a '+, e.g
"a "+"string" = "a string"
* subtraction indicated with a '-, e.g. »
~"a string" - "ing"™ = "a str"
« access nth character; from end: :<[n], from start: :>[n], e.g.
"a string":<[3] = "iv, and
"a string":>[3] = "g",

* access substring ranging from n'h character for m characters: from
end: :<[n,m], from start: :>[n,m]. e.g.

"a string":<[3,2] = "ir", and

"a string":>[3,2] = "st",

These operations are defined in the lexicon but not within LexScript. The
operators that encode the operations are executed using prolog clauses.

6.3.4. Variables

Variables are used for structure sharing and for passing parameters to functions
and operations. Given that LexScript lives inside prolog, prolog variables are
LexScript variables, at least at the present stage of development. So variables

61

6. LexScript

are indicated by identifiers with an initial capital letter or underscore. Le. T, .
Var, _var, _Var are variables,

6.3.5. Sets and Graphs

A set is a prolog list [E1, .., En] such that that Ei#E§ whenever i#j. A
(feature) graph is a set of attribute value pairs [AVy, . . ., AV,). The AV-pairs
are constructed with the prolog operator ":"; so a sample graph may look like this,
[a:b, m:[a:c, f:g], £:h]. While the attributes are restricted to atoms,
the values can be almost anything, e.g., strings, derivations, paths, operations,
functions etc.. '

To distinguish between different uses of prolog lists, they are equipped with
a type tag (or qualifier), which will tell the LexScript interpreter how to treat the
list. The type tag is glued onto the list with the symbol '#', so if a_type is atype
specifier and G a list, then a_type#G is an object of type a_type.

Even though graphs are a special case of sets, an untyped list will by
default be treated as a feature graph, and sets are tagged with the type specifier
set. '

In association with graphs, there is the important notion of a path. Paths are
constructed with the right associative binary operator '->', giving rise to
structures like

P1—>pP2~>..=>Pn,

where the p; are attributes.

Graphs are evaluated on paths in the usual way by iterated application.
That is, if G is a graph and p1->p2->...->py is a path, then G evaluated with
respect to the path is '

G(P1->pP2->..=>pn) = (..((G(p1)) (pP2))..) (Pn) .

Evaluation is defined so that G (py) =V3,if p;:Vy € G.

Paths can be used in many ways. One interesting use is to let them express
shared values within graphs. However, this is probably done more easily by
variables, but here is how paths have been put to that task in the lexicon. If a
path P = p1->...->py occurs inside an expression V in a graph G, e.g., as a value
or as an argument to a function, P is evaluated with respect to the closest
dominating subgraph D of G which has p; in its domain.

Example: given the following graph, with P, D and G indicated.

62

6. LexScript

id = [
a: [
b: [d: "val"],
a: [b: "value"], 7 p G
c :,a->b
] ~
1. P

The reference for P in Gis "value™”.

This definition is not the only one. One might want to consider the whole
path P, ie., move upwards and see if there is a path matching P all the way
"down", instead of just searching for a graph matching the head of P. A definition
like this would make a difference if we, in the above example,replaced a->b, with
a->b->c. With the former definition the result would be undefined, while with the
latter the path would evaluate to "val".

6.4. The hierarchy constructor '++'

This section describes how graphs are put together in what we call a message
hierarchy. A message hierarchy is defined with the | (bar) operation, which for
implementation reasons is encoded in the lexicon as the left associative operator
++'. A different way of constructing such hierarchies is given in the section on
entries. The hierarchy defines how information flows between graphs.

The one operation on graphs that makes them so useful is unification, which
combines compatible pieces of information. However, it is sometimes desirable to
be able to depart from this. For example, one may want to remove something
from a structure, or replace it with something else. The bar-operation used in the
coding of derivations is designed to accomplish this. It can be viewed as a binary
operation on graphs which behaves exactly like unification except that it gives
precedence to the right, i.e., if A is combined with B, and there are incompati-
bilities, the information in B "wins". The '++' is our version of a priority union.

The idea behind '++' is to view graphs as message handlers in the sense of
OOP (=Object Oriented Programming). A function applied to an argument
returning a value, and a message handler responding to a message is almost the
same thing. The difference is that message handlers occur in hierarchies, so that
if one handler is unable to respond to a message it can be passed further up in the
hierarchy for processing. Constructing such a hierarchy is the task we assign to
the '++'-operator. Given the way messages travel, this will implement '++' as a
priority union. '

Before we give the definition of how a hierarchy is interpreted, there are two
extensions left to make for the graphs. The first is the addition of pairs
constructed with the operator '::'; they are of the form att : : P where att is an
attribute and P a path. The intuitive idea is that a graph receiving the attribute

63

6. LexScript

att will respond with the hierarchy's value on the path P. The second is the
introduction of the variable «, the back arrow. The back arrow when used in a
graph gets its value from the graph's predecessor in the hierarchy. How this
works will become clear in the following definitions and examples.

Definition: Message Hierarchy (MH)
a. Any graph is a MH.
b. If His a MH and G is a graph then H++G is a MH.

It should be possible to view a MH as a graph, that is, if H is a MH, then H
should be able to evaluate on paths as graphs do. Evaluation of MHs is defined
as follows.

Definition
Let H = A++B be a MH and p an attribute. H is evaluated according
to the following cases:
(1) if p::R is an element of B then
H(p) = A(R)
(2) else, if p immediately dominates the back arrow in B, (no attribute
between p and «.)
H(p) = B(p)[A(p)/«—] (f[x/y] means bind y to x in)
(3) else, if B(p) or A(p) is atomic, then
H(p) = B(p)
(4) else if B is atomic
H(p) = null (null is the universally no unifiable element)
(S)elseifpe B
H(p) = A(p)
(6) else
H(p) = A(p)IB(p)

This definition ensures that if A and B are unifiable graphs and there are no p::R
or < in B or A and G is the unification, then G(P)=(A++B)(P) for all paths P.

Example 1. Changing the form and category of a word:

A = [string:"eat", category:[main:verb, gender:masc]]
B = [string: ¢«+"ing", category:noun]
here,
A++B(string) = («+"ing") ["eat"/«] by (2)
= “eat"‘l‘"ing"
= "eating"

and in general,
A++B =[string: "eating"™, category:noun]

64

6. LexScript

Example 2. Permute a graph:

A = [subj:"John", pred: "kill", object: "the bear"]

Permute = [subj::obj, object :: subj]

Here,
At++Permute (subj) = A(obj) = "the bear" by (1)
A++Permute (obj) = A(subj) = "John" by (1)

At++Permute (pred) = A(pred) = "kill" by (6)

This section concludes with a discussion of set valued attributes, and how they fit
into the scheme of things. A set value will, in the hierarchies, be treated as a kind
of ‘or'-graphs, i.e. the pair attr:set#[a,b, c] in a graph means that any of
attr:a, attr:b, attr:c is possible. The ++ operator is extended to deal
with sets simply by distributing over. That is:

[att:set#[a,bl]l++{att:c]
corresponds to

[att:set#[a++c, b++c]]
and

[att:c]l++[att:set#[a,bl]
corresponds to ,

[att:set#[ct++a, c++b]]

The set valued attributes introduce an indeterminacy in the evaluation of paths. In
the lexicon their use is kept to a minimum,; they are used only where it seems
- natural to regard the value of an attribute as a set of possibilities.

6.5. The Structure of Entries

Entries are basically a collection of hierarchies; but not any collection. All the
hierarchies have a common root of which they represent variations. The form of
entries exploits this in the following way. All entries have an attribute BASE
which encodes the basic properties of the entry; then there are a variable number
of continuations (or variations) of the BASE. The continuations are attribute
value pairs, where the value is classified with the type specifier continuation. The
structure of an entry repeats itself inside each continuation. The information
represented by this kind of structure is computed as follows. Let G be a graph
with the structure:

65

6. LexScript

[

BASE: BVal,

VARIATION: continuation # [
BASE: SubBval,
variation: continuation # [

BASE: SubSubBval

]

1,

VARIATION2: continuation # [
BASE: Sub2BVal

]

The information set expressed by G is then

{BVal, BVal++SubBVal, BVal++SubBVal++SubSubval, Bval++Sub2Bval, }.

The above set is a collection of derivations.

6.6. An Example

The main purpose of the lexicon is to encode properties of words. It relates
wordforms to their lexical, syntactical properties. However, this does not mean
that every wordform is explicitly represented in the lexicon as such, e.g., as a list
of correspondences, although the lexicon can be viewed in that way. The proper-
ties of each word are shared by other words, or are closely related to some
others. How are these correspondences encoded?

There are certain problem as to what should be stated in the lexicon. Take a
stem W of category C, and a derivational morpheme M mapping words of C onto
category D. The question is this: should the form W#M be listed in the lexicon?
The approach taken in TROLL is to list it, if W#M is an a word in common use.
There are many reasons for this. First, The morph M may represent many
different changes, depending on W, changes which are not predictable from the
internal structure of W. Second, not all words of C can be affixed with M. Third,
the lexicon will represent a complete list of the actual words that are in use in the
language.

A lexical entry in TROLL encodes a set of related wordforms. The forms and their
properties are related by derivational sequences. For example, the following list
of words (partially representing the entry for the verb 'spise' (eat)), are repre-
sented within an entry:

66

6. LexScript

spis stem

spist#e infinitiv
spis#er present tense
spis#t participle
spis#te past tense

spis#e#s s-passive present tense
spis#te#s s-passive past tense

spis#elig +able (adjective)
spis#elig#het +able+ness (noun)

The first-group exhibits the inflectional paradigm of the verb, the second, two
passive forms, and the third, two possible continuations. Each of these forms
corresponds to distinct information groups as explained in section 1. The forms
differ in some parts of the informational graph. The items in the inflectional group
share the same category and SAF, while they have different LLFs. The items in
the passive group also share between them the same SAFs, but they are
different from the ones for the inflectional group, although the former is derived
from latter. The last group, comprising the case of derivational morphology, have
different SAFs, LLFs, and category.

The entry for 'spise’ will be worked out so that one can see how this entry could
be realized. The actual identifiers employed here may vary from the ones used in
Troll itself. The information that goes into the entry is also simplified, in that here,
only the forms and the syntactic templates are represented.

First, the entry is given a unique identifier say 102314, and the BASE information
is added:

102314 := [
BASE: |
form: "spis",
category: verb,
SAF: transitive verb

1

transitive_verb := [<ea,NP,agent>,<gov,NP,theme>]

This entry encodes the stem, its category and base template. The base template
is typically not defined within the entry itself; there are some 20+ basic
templates. The tuples <x,y,z> is shorthand for x: [function:x, cat:y,
role:z]. The entry can now be expanded to accommodate the derived forms. A
derived form is introduced with an attribute value pair where the value is of type
continuation. This is to distinguish it from other pieces of information one may
want to put into the entry. For the #lig type derivation, the attribute is lig_adj; so
the following pair is entered at the same level as 102314 ->BaSE:

67

6. LexScript

lig_adj : continuation # [
BASE: |
form: <« + "elig",
category: adjective,
SAF: ligl

1ligl derivation [..].

The derivation that changes the SAF is kept in a derivation definition, they are
specified as prolog ground clauses with the binary operator derivation; the left
argument is an identifier and the right is the actual definition used in computing
the informational value.

The #het derivation can now be added to the continuation in the same way that
#elig was added to the entry:

het_noun : continuation # |
BASE: [
form: « + "het",
category: noun,
SAF: hetl

hetl derivation [..].

The full structure of the entry for 'spise’ is so far:

102314 := [
BASE: [
form: “spis®,
category: verb,
SAF: transitive verb
]
lig_adj: continuation # [
BASE: [
form: &« + "elig©,
category: adjective,
SAF: ligl
]
het noun: continuation # [
BASE: [
form: « + "het™,
category: noun,
SAF: hetl

transitive verb := [<ea,NP, agent>, <gov,NP, theme>] .
1ligl derivation [..}.
hetl derivation [..].

68

6. LexScript

The entry 102314 tells us that there is a transitive verb with a stem 'spis’, and
that it has an adjectival form, and, based on that, a noun form. It doesn't say
anything about how the verb is inflected and how the inflections relate to the
syntactic properties.

Inflectional paradigms are introduced as sets. For our verb, make this definition:

regular infl := set # [
[form: « + "e", infl:infitivall,

[form: « + "er"™, infl:present tense],
[form: « + "te", infl:past tensel,
[form: « + "t", infl:participle]

This is added to the entry at the same level as 1ig adj, under the attribute

verbs[ie.:

verbs: continuation#|
BASE: regular infl
]

Note that the inflectional paradigm does not affect the SAF, only the shape of the
word is changed. Using the rules of distribution described above, the addition of
this subgraph has the effect of saying that the inflected forms of 'spis', can have
the same SAF. This is a general fact about verbs, the selectional restrictions do
not change if the inflection changes. Variations in the SAF are common to all the
forms in the inflectional paradigm. This is accomodated by letting all the verb-
related derivational sequences be continuations of the subgraph that introduces
the inflectional paradigm. For example, 'spise' has in intransitive use. The
detransitivaztion is effectuated by changing the gov-element in SAF into an
inplicit argument, give this derivation the name de_trans, and add it :

verbs: continuation#]
BASE: reqular infl,
intrans: continuation#]
BASE: de_trans
]
]

Again, the rules of distribution will link the detransitivization process to all the
inflected forms of the verb.

The full structure of the entry together with derivations and symbols takes
the following form.

69

The entry:

102314 := [
BASE: [

6. LexScript

form: "spis",
category: verb,
SAF: transitive verb

]

lig adj : continuation # [

BASE: [

form: « + "elig",
category: adjective,

SAF:

]

ligl

het noun : continuation # [
BASE: [

]

form: « + "het™,

category: noun,
SAF: hetl

verks: continuation#[
BASE: reqular_infl,

intrans

: continuation#{

BASE: de_trans

The definitions:

transitive verb
regular infl
[form:
[form:
[form:
[form:

TTTT.
+ o+ 4+ +

ligl derivation
hetl derivation

:= [<ea,NP,agent>, <gov, NP, theme>]
set # [

"e", infl:infitivall],

"er", infl:presenthtense],

"te", infl:past~tense],

"t", infl:participle]

[..definition body of ligl..].
[..definition body of hetl..].

70

7. Final remarks.

This presentation of TROLL has had a few references to what has so far (by
October 1, 1989) been done in the project. At the end, we may be slightly more
explicit on this point.

1. The language which has so far been worked on is largely Norwegian, by the
group in Trondheim (presently Lars Johnsen, Anneliese Pitz, Lars Hellan, and
until recently, Tor Afarli), but also on German (by Annelise Pitz) and Dutch (by
Hanneke van Hoof). A French version is being initiated by Carol Neidle. The
hardware available for the Trondheim group is a number of Macintoshes
(including one Mac Icx and one Mac II).

2. The emphasis has been laid mainly on principled aspects of the system:
quantitative progress (in terms of entries processed etc.) obviously cannot be
made until the framework has been laid down. Still, around 2000 Norwegian verbs
have been partially treated for syntax, and exhaustively for inflectional paradigm.

The concentration has been mainly on verbs so far, but work on other word
classes is in progress. As for the main components, syntax and morphology are
those which have been developed farthest, but work on semantics, pragmatics
and phonology is in good progress.

3. The project in Trondheim is financed partly by the Norwegian Research Council
for Science and the Humanities (NAVF), partly by the University of Trondheim;
at this point, it is clear that partial support by NAVF will continue till summer
1991. As the perspectives of TROLL go far beyond what can be accomplished
within such a period, we hope to keep the project alive further: in part through
renewed applications to NAVF, in part through collaboration with other groups,
in part through contract research.

References

Barwise,J. and R.Cooper, 1981: "Generalized Quantifiers", Linguistics and
Philosophy 5.

Chomsky,N. Aspects of the Theory of Syntax, MIT Press, Cambridge, Mass.

Grimshaw,J. 1988: "Adjuncts and Argument Structure", Lexicon Project Working
Paper #21, Center for Cognitive Science, MIT, Cambridge, Mass.

71

7. Final remarks

Hellan,L., 1988: Anaphora in Norwegian and the Theory of Grammar, Foris
Publications, Dordrecht.

Lloyd, J.W. 1984: Foundations of Logic Programming, Springer.

Montague,R., 1974, "The Proper Treatment of Quantification in English," in
Thomason,R. (ed) Formal Philosophy, Yale University Press, New
Haven.

Riemsdijk,H. van, and E. Williams: 'NP-structure', The Linguistic Review 1.

Roberts, I., 1987: The Representation of Implicit and Dethematized
Subjects, Foris Publications, Dordrecht.

Sedgewick, R. 1983: Algoritms, Addison-Wesley.

Shieber, S. An Introduction to Unification-Based Approaches to Grammar, CSLI
Lecture Notes, Stanford

Williams, E., 1985: "PRO and Subject of NP", Natural Language and Linguistic
Theory, 3, 297-316.

Zubizarreta, M.-L., 1987: Levels of Interpretation in the Lexicon and in the
Syntax, Foris Publications, Dordrecht.

72

A pp:

\3.10.87

| o.

AMD. 1

PARSING LANGUAGE PREDICATES, SYNTAX AND SEMANTICS

Expression
Thematic roles

ag(x,z)

exp(x,z)

th(x,z)

ben(x,z)

dir(x,z)

loc(x,z)

target(x,z)

path(x,z)

instr(x,z)

applic(x,z)

unspec_role(x,z)

pred(x,z)

Reading and example

x realizes the agent role
associated with z

(John are the cake)

x realizes the experiencer
role associated with z
(John worries Bill)

x realizes the theme role
associated with z

(John ate the cake)

x realizes the benefactive
role associated with z
(John gave Bill a book)

x realizes the directionality
role connected with z
(John sent the book to me)
x realizes the locative role
associated with z

(John lives in London)
x realizes the target role of
z (John short at the house)
x realizes the path role of z
(John went down the
street)

x realizes the instrument
role relative to z

(John cut the grass with a
knife)

x realizes the 'application’
role associated with z
(John used the rope for
climbing)

x's role with regard to z is
unspecified (in TROLL)
(John is sick)

x is a predicate in the
syntactic frame of z

(John made Bill sick)

deg pred(x,z)

no_role(x,z)

no_role(x)
cog_obj(x,z)

inher_obj(x,z)

measure(X,z)
manner(X,z)

repr(x,z)

Semantic predicates

inst(y,z)

rep(x,y)
situation(y,x)

state(y,x)

whole_part(x,z)

rel(x,z)

x is a degenerate predicate
in the syntactic frame of z
(Jon dummet seg ut 'Jon
made a fool of himself)

x has no semantic role
with regard to z, but
possibly with regard to
other elements

(John made Bill sick)

x has no semantic
function

(it rains)

x is a 'cognate object' of z
(John died a dreadful
death)

x is an inherent object of z
(Jon harket slim)

X expresses a measure
argument of x* 2

(the stone weighs Skg)

X exXpresses a manner role
relative to z

(John lives well)

x expresses the role of the
represented relative to z
(the picture represents
John)

y is the instantiator of z

x is a representative of y

y is a situation with the
internal structure x

y is a state with the

internal structure x

z's instantiator typically or
necessarily forms part of a
whole, and x expresses this
whole

(John's leg)

z expresses a relation, and x
expresses the 'relatum’
(John's friend, a friend of
John)

prop_arg(x,z)

den(x)
part_of(u,v)

affected(u,v)

result(u,y)
possible(u,v) ,
durative(z)
stative(z)
punctual(z)

Syntactic functions

ea(x,z)

gov(x,z)

io(x,z)

pp_arg(x,z)

predic(x,z)

preposed_predic(x,z)

impl_arg(x,z)

adverbial(x,z)

compl(x,z)

X is a propositional
argument to z

the denotation of x

the representative of u is
part of the representative of v
the representative of u is
affected by the
representative of v
uisaresultofy

v is possible for u

z has durative content

z has static content

z has punctual content

x is external argument of z
(John read the book)

x is governed by z

(read the book, on the
floor)

x is indirect object of z

(John gave Bill a book)

x is a PP expressing a central
role associated with z

(John ralked with Mary)

x functions as a predicative
in the frame of z, either as a
full predicate ('pred’) or as a
degenerate predicate (‘degpred’)
(John made Bill sick)

like predic, except for
occurring to the left of DO
instead of to the right

(Jon malte rggdt huset)

x 1s an implicit argument of z
(the x atrack, John was
killed x)

x has adverbial function
with regard to z

(go quickly, sing in Budapest)
X 1S a propositional
complement to z

(det virker som Jon er
syk)

subj_contr_compl(x,z)

gen(x,z)

refl(x,z)

incorp(x,z)

attrib(x,z)

lightv_float(x,z)

unspec_function(x,z)

Category predicates
max_proj(u,v)

P(x)
PP(x)
Adv(x)
AdvP(x)
AP(x)
NP(x)

X is a subject-controlled
complement in the frame
ofz

(Jon virker som om han
er syk)

x functions as genitive in
relation to z

(John's book, vennen til
Jon)

X is a 'de-argumentized'
reflexive associated with
the verb z

(Jon skammer seg, Jon
vasker seg, Jon gikk seg en
tur)

x is incorporated as sister
of zin a word (stem) where
z is head

(husbygging)

X is attribute of z

(a yellow house)

x is subject for a 'light
verb' which has z as
complement

(John committed murder)
x's function relative to z is
unspecified (in TROLL)

u is the maximal
projection of v

X is a preposition

X is a prepositional phrase
x is an adverb

x is an adverb phrase

x is an adjective phrase

X is a noun phrase

RP(x) x is a referential phrase' (the carrier
ofthe function 'implicit argument")
[seg]NP(x) X is a seg-reflexive

[Adv]AdvP(x)

[ut] Adv(x)
([ut] Adv]AdvP(x)

[_[ut]Adv_]AdvP(x)

[...[ut]Adv...]JAdvP(x)

[eINP(x)

at clause(x)

wh clause(x)

4 inf(x)
bare_inf(x)
4_inf_regcontr(x)

&_inf_markcontr(x)
&_inf_arbcontr(x)

unspec_cat(x)
om_S(x)
som_om_S(x)

det_there(x)

det_it(x)

x is an adverb phrase consisting only
of a head ’
x is the adverb ut

x is an adverb phrase consisting only
of the head ut '
x is an adverb phrase with the head
ut, and possibly other items

X is an adverb phrase with the head
ut, and necessarily also other items
x is a trace of category noun phrase
x is an at-clause

X is a wh-clause

x is an A-infinitive clause

x is a 'bare’ infinitive clause

x 15 an 4-infinitive with

regular control, i.e. control

by the closest NP

X is an &-infinitive with

‘marked’ control’, i.e. control

by a rcmote NP

X is an &-infinitive with

‘arbitrary' control

x's category is unspecified
(in TROLL)

X is an gm-clause

X is a som om-clause

x is the expletive
corresponding to there

x is the expletive
corresponding to it

fpp. 17
8_\0.81 LEXSCRIPT PREDICATES, SYNTAX AND SEMANTICS

Predicate Comment Interpretation in the
parsing level language

Role (R):
ag ag(x,z)

exp exp(x,z)

th th(x,z)

ben ben(x,z)

dir dir(x,z)

loc loc(x,z)

prd pred(x,z)

no no_role(x,z)
unsp unspec_role(x,z)
inherob inher_obj(x,z)
target target(x,z)

path path(x,z)

instr instr(x,z)

applic applic(x,z)
norole no_role(x)
cogob cog_obj(x,z)
degprd deg_pred(x,z)
wholepart whole_part(x,z)
rel rel(x,z)
prop_arg prop_arg(x,z)
measure measure(x,z)
manner manner(x,z)

repr repr(x,z)

scsu 'small clause subj',
with intr. verb

tvscsu 'small clause subj',
with trans. verb

uvA[pred(w,v) &
ea(u,w)] (x,z)

{'w' is shared with the
argument with function
‘predic’)

uAvA[pred(w,v) &
th(u,v) &ea(u,w)]
(x,2)

{'w'is shared with the
argument with function
‘predic')

part the const. is a PP
whose NP denotes
something which is
part of the object's
denotation ("shoot
John in his back")

whole the const. denotes
something which
is a whole relative
to the denotation
of the succeding PP

Category (K):

np
at_ S
hv_S
A_inf
seg
Pp
ap
unsp

p

p
adv

advp

adv_advp

word_ut_adv
this instantiates
a format used for
all adverbs, and in
turn all categories;
likewise for the
following 3 entries

word_ut_advp
word_ut_advp_excl
word_ut_advp_add
e

inf

a_inf_regcontr
a_inf_markcontr
&_inf_arbcontr
om_S

urkMEw[P(w) &
gov(u,w) &

target(u,k) &
part_of(u,y)]](x,z)
{'y"is shared with DO}

u kA affected(u,k) &
part_of(v,u)](x,z)
{'v' is shared with
the succeding PP}

NP(x)

at clause(x)
hv_clause(x)
4 inf(x)
[segINP(x)
PP(x)

AP(x)
unspec_cat(x)

RP(x)
P(x)

Adv(x)
AdvP(x)
[Adv]AdvP(x)
[ut] Adv(x)

[{ut]Adv_] AdvP(x)
[[ut]Adv]AdvP(x)
[...[ut]Adv-..]JAdvP(x)
[eINP(x)

bare_inf(x)
a_inf_regcontr(x)
&_inf_markcontr(x)
&_inf_arbcontr(x)
om_S(x)

som_om_S
det_there
det_it

Function (F):

ea
gov
i0

pgov x is governed
by a preposition

adv
gen
incorp
attrib
unsp

lightv

p x is governed by the
prep. pd, which itself
heads a pp_arg of z

(this predicate is used
only in the context
<X,np,_>, where X is
not prd)

pgov2 exactly like pgov
pgov3

pa2 exactly like p
pa3

som_om_S(x)
det_there(x)
det_it(x)

ea(x,z)
gov(x,z)
io(x,z)

uMA[Ey[P(y) & gov(u,y)
& pp_arg(y,W]] (x,z)

adverbial(x,z)
gen(x,z)

incorp(x,z)
attrib(x,z)
unspec_function(x,z)

lightv_float(x,z)

urvA[P(pd) & gov(u,pd)
& pp_arg(pd,v)] (x,z)

som x is governed by som, uAvA[P(som) &
and acts as a predic gov(u,som) &
predic(u,v)](x,z)

(this predicate is used
only in the context
<prd,X,_>)

for x is governed by for,
and acts as a predic

(this predicate is used
only in the context
<prd,X,_>)

pp_arg

predic

implarg

refl
preposed_predic
compl
subj_contr_compl

urVvA[P(for) &
gov(u,for) &
predic(u,v)](x,z)

pp_arg(x,z)
predic(x,z)
impl_arg(x,z)
refl(x,z)
preposed_predic(x,z)
compl(x,z)
subj_contr_compl(x)

f\Pp.

| O

SemRel

SemRel is a package of information relating to relations between instantiators
of words, and is not strictly part of the grammar. The initiative to this part,
as an independent enterprise, was taken by Margaret Nizhnikov and the
Circle group,under the name "In Other Words" (IOW), whereas the
connection to the TROLL format and the definitions have been worked out
by the TROLL group. Throughout, SemRel is also referred to as 'Relations’,
the label used in the original IOW,

1. General remarks.

1.1. Format.

The information under Relations is given at two levels, the LexScript level
(henceforth 'Script') and, as a definitional part, the level of the parsing
application languageel, hencefort 'Def'. At Script level, the general format of

“representation for the whole package is attribute-value (AV-) graphs of the

form (1),

(1) entryword {
Attribute 1: value
Attribute 2: value

where ‘entryword’ is the word for which a lexical entry is defined, and
'value' may in turn be an attribute with a value. A value is always unique,
but nothing precludes it from being a ser of entities. As ‘entryword'
functions an xdermf er, for present purposes written simply as a graphemic
form. 'Relations’ appears as one of the attributes in (1), and its value is the
set of specific relations constituting Relations; schematically as in (2):

(2) ID-entryword: {

Cat: ...

Segmental: ...

Template: ...

SemRel: |
Antonym: value
Classifier: value
Examples: value

What is entered as 'value' of a Relation-attribute is uniformly a word (or set
of words), to be referred to as the valueword of a given relation.

1.2. Basic semantics.

The relation attributes in 'Relations' are classified according to the way
entryword and valtfeword, either as words or via their contents, relate to
each other. Some notions are crucial to making precise the possible relations
in terms of content. In accordance with assumptions expressed elsewhere,
we assume that a word relates to 'reality’ in either of the two ways:
instantiation and denotation. For a common noun, its instantiator is the
(type of) thing (or piece of a mass) to which it correctly applies; its
denotation is the concept it expresses, or what in extensional logic comes out
as the ser of objects of which it is true. For a verb, its instantiator is the (type
of) situation of which it is correctly used; its denotation is the concept it
expresses. Likewise for an adjective. For a proper name, its denotation is the -
thing it is used of; this coincides with its instantiator. The following
notational conventions apply: '

(3)
Expression in Def Reading
den(x) the denotation of x
inst(x,y) X instantiates y

1.3. The classification of 'Relations'.

The attribute 'Relations' covers those non-grammatical properties of an
entryword which somehow or other involve a relation, the relatum of which
can be indicated by means of another word, the valueword. Here follows a
gross classification of these relations; detailed definitions and examples
follow in section 2.

A first classifying feature is whether the relation obtains between the
nwo words as such, or between what the words stand for. Examples of the
former are the compounding relation (Compounding) and the idiomatic
meaning concatenation relation Idiom (i.e., that the combination entryword
followed by valueword has a non-compositional meaning). Let us call such
relations Linguistic relations, as opposed to Non-linguistic relations. The
linguistic relations constitute GROUP G below.

Non-linguistic relations are the majority. A first classifying feature for
them is whether the relation is purely conceptual or not. The former case

comprises relations such as Antonym, Classifier, Examples, Is,
Like, Semantic Field, Synonym. This is GROUP A. A notion
common to the definitions of most of these relations is that of 'semantic
field', or the derivative notion ‘exemplify’ . In each case, both entryword
and valueword represent concepts.

A not purely conceptual relation can be either a prototypical relation or
a factual relation. These options are not organizationally distinguished here,
but in the formal definitions they are. At least one of the two words then
represents its instanfiator. The main types are as follows.

First, both words may represent things, and the relation is some
prototypicality or factual relation between these things. This is GROUP B.
One subgroup of this group is constituency relations, such as Has, PartOf,
MadeOf, Number, Organization (GROUP Ba). Another (Bb) is
relations which represent some kind of cooccurrence, such as
Cooccurrence, Manifestation, Sign, Snowball and Symbol. A
third, less homogeneous subgroup (Bc) comprises the SourceOf relation,
the relations listed under Prepositions, and Unit.

Secondly, entryword represents its instantiating thing, and valueword -
a prototypical property of that thing. Examples are Adj, Color, Shape,
Texture. This is GROUP C. ‘

Third, entryword represents its instantiating thing, valueword
expresses a situation in which this thing plays a certain role, specified by the
attribute. The main cases are Action, How, Instrument, Intensifier,
Purpose 1, Result 1, Where, together constituting GROUP Da. In
addition come Field and When, GROUP Db, where valueword expresses
a 'field’ or type of situations.

Fourth, both words represent their instantiating situations., and the
attribute specifies a relation between the situations. Examples include
Purpose 2 and Result 2. This is GROUP E.

A further group - F - is constituted by relations belonging to a higher
order level, making comparison between relations or properties (Compare,
Homologous, Metaphor; GROUP Fa), or ascribing numbers to them
(Cardinality, Ordinality; GROUP Fb).

2. The Relations attributes.

Below, we go through the Relations attributes according to the grouping just
suggested. For each relation is provided (a) a short verbal definition; (b)
examples, in the form of an entryword paired with the valueword picked out
by the relation in question; (c) a formal representation of one or more of the
examples, phrased in terms of the Def-notation and concepts, including those
in (3). In these formal definitions, it may be noted that when a word is

entered with underline, that expression is short for an identifier of the word
intended (the spelled representation of which is the spelling used); this
represents a mention of the word, as opposed to a use of the word when no
underlining occurs. For convenience, we refer to the thing instantiating the
entryword as entrything, and to the thing instantiating the valueword as
valuething (similarly for situations, when that is relevant); in the same vein,
the concept expressed by entryword and valueword is called entryconcept
and valueconcept, respectively. Further comments are made in connection
with the particular attributes, and the first attribute is given a more complete
explanation than the later ones.

2.1. GROUP A.
This group consists of relations which crucially relate to the semantic fields
of the concepts expressed by entryword and valueword.

Antonym 1
Examples:
boy:girl
right:left
Antonym 2
Example:
tall:short

-

In both cases of antonymy, the notion of sernantic field is crucially involved.
In the case 'boy-girl', the field is binary, i.c., it has two members only.
(This holds even for 'right/left', namely the 'field’ of directions relative to a
front.) In the case 'tall-short' the field has many members, namely the values
along the height dimension (whether the values are discrete or not does not
seem to affect the present point), and the antonyms are the extreme values at
each end. The Def definition (4) represents the first case, (5) the second:

(4) EP[exemplify(den(boy),P) & exemplify(den(girl),P) &
K{xlexemplify(x,P)}=2]

(5) ES,x,y[scale(S) & extremes-of(x,y,S) & x=den(tall) &
y=den(short)]

('E' is the existential quantificr, 'K{...)' means 'cardinality of. 'P' and 'S’
are the semantic fields involved. ‘exemplify(x,y)' is the relation between the
concept x and the semantic field y to which it belongs.)

To be precise, let us point out how Script- and Def-format interact. The
Script representation of the pair ‘boy:girl' is (6):

(6) boy {
Attribute x: ..
Attribute y: ...

Relations: {

Antonym 1: girl

The particular path from entryword via Relations and Antonym 1 to
valueword has the more general representation (7), where "' is the lambda-
operator; the first argument to this function is the entryword, the second the
valueword:

(7) Az"yEP[exemplify(den(z),P) & exemplify(den(y),P) &
K{xlexemplify(x,P)}=2]

What has now been illustrated is the general procedure for linking Script-
representations in Relations to the Def format: for each pair
entryword:valueword, the path of which they are the extremes has a general
translation in Dcf as a function involving lambda-operators, and entryword
and valueword serve as arguments of this function. (There are only three
exceptions throughout, under the attributes Part of (2.2.1), Preposition
(2.2.3) and Action (2.4.1).) In the following, this function is never entered
by itself, only after it has been applied to one of the examples of entryword-
valueword.

Classifier
Entrything has a property which exemplifies valueconcept (in MN's
words: "the type of entity that something comes in").
Examples:
car: make
man: race

Def representation:

(8) inst(x, man) -> EP[P(x) & exemplify(P, den(race))]

In words: if x instantiates man, then x has some property P which
exemplifies the property denoted by race. So, P can be 'white', 'black’, etc..
The Def predicate 'exemplify' is the hyponym relation (see Examples).

Examples
Valueword is a hyponym of entryword.
Examples:
race: black, white, oriental
Def representation:
9) exemplify(den(black), den(race))

“Exemplify’ is the Def predicate for the hyponym relation.

Is
Entryword is a hyponym to valueword.
Examples:
arm: limb
student: person

Def representation:

(10) exemplify(den(arm), den(limb))

Like
Entryconcept and valueconcept belong to the same semantic field, and
are close to each other inside that field. -
Examples:
white: light, beige
tree: bush

Def representation:

(11) EP[exemplify(den(tree), P) & exemplify(den(bush), P) &
close(den(tree), den(bush))]

In words: there is a property, or 'semantic field' P, which is exemplified
both by 'tree’ and 'bush’, and these are close to each other within this
semantic field.

Semantic field
Entryconcept and valueconcept belong to the sare semantic field.
Examples:
white: black, oriental, ...
north: east,south,west

Def representation:
(12) same-sem-field(den(north),den(east))

(12) is equivalent to (13), which is to say that 'same-sem-field' can be
defined in terms of the relation 'exemplify':

(13) EP[exemplify(den(north),P) & exemplify(den(east),P)]
Synonym:
Example:
arm: weapon

Def representation:

(14) same(den(arm),(den(weapon))

2.2. GROUP B.
This group consists of relations between things instantiating entryword and
valueword.

2.2.1. Subgroup Ba. Constituency relations.

Has
Valuething is an essential constituent of entrything, the Def predicate
for this relation being 'part-of'.
Examples:
car: wheels, steering wheel
body: arms, legs, head

Def representation:

(15) inst(x,arm) -> Ey[inst(y,body) & part-of(x,y)]

(See also Part of.)

Made of
Valuething is the substance of which entrything is prototypically niade.
The Def predicate for this relation is 'made-of'.
Example: '
fork: silver

Def representation:

(16) inst(x,fork) ->> Ey[inst(y,silver) & made-of(x,y)]

Organization
Valuething is the type of organizational unit to which entrything
i)rototypically belongs.
Examples:
student: school, university
book: library, bookstore

Def representation:

(17) inst(x,student) ->> Ey[inst(y,university) & belong-to(x,y))

Part of
Entrything is an essential part of valuething. The preposition indicates
how the two are locatively related, reflecting the linguistic usage.
Examples:
finger: hand(on)
Paris: France(in)

Def representation:
(18) inst(x,finger) ->> Ey[inst(y,hand) & part-of(x,y) & on(x,y)]

Unlike the schema illustrated in (6) and (7), the present cases involve three
paramcters rather than two, viz. entryword, the preposition entered in
parenthesis, and valueword; a counterpart to (7) with three lambda-operators
rather than two will then be used for translation from Script to Def.

(It may be noted that as a piece of subcategorization specification, the
information that on is the preposition used with finger relative to what it is

part of, appears in the SAF attribute in LexScript, describing the realization
of the 'part of role associated with finger. This information would then not
need to be replicated under SemRel.)

2.2.2. Subgroup Bb. Cooccurrence relations of various types.
Cooccurrences
Entrything and valuething typically cooccur.
Examples:
magnet: iron
rain: wind
Def representation:

(19) inst(x,magnet) ->>w Ey,z[inst(y,iron) & sit(z) & cooccur-in(x,y,z)])

“This reads: if x is a magnet, then there is prototypically (in a weak sense) a
situation z such that x cooccurs with (some amount of) iron in z.

Manifestation
Valuething is a manifestation of entrything.
Example:
water: snow, steam, ice

Def representation:

(20) manifests(den(snow), den(water))

(Counting this as a ‘cooccurrence' may be stretching the notion a little - it is
certainly the most borderline case. The alternative of grouping it under Ba, as
constituency, is not to the point either, however.)

Sign ,
Entrything is a natural sign of valuething,

Example:
smoke:fire

Def representation:
(21) tobe filled in

Snowball
Entrything comes standardly with or without valuething.

("Snowball" alludes to the circumstance of a snowball rolling, with more
material adjoined to it as it rolls on, while it is the same snowball all the
time.)
Examples:
paper: lines, margins
hamburger: ketchup, relish, mustard

Def representation:
(22) inst(x,paper) ->>w inst(y,margin) & adjoined-to(y,x)

One may note the contrast to Part of, which covers essential parts of a
thing; those here in question may be called non-essential.

Symbol
Entrything is culturally a symbol of valuething.
Example:
13: bad luck

Def representation:
(23) to be filled in

2_.2.3. Subgroup Bc. Miscellaneous.

Prepositions
For cach preposition P, entrything has the relation expressed by P to
valuething - either prototypically or factually.
Example:
finger: (on: hand}
epilog: {after: story)
: {in: book}
Jesus: {from: Nasareth)

Def representations:
(24)a. inst(x,finger) ->> Ey[inst(y,hand) & on(x,y)]

b. from(den(Jesus),den(Nasareth))

In general, this relation is relevant only for nouns, and only when the
preposition has a clear locative or temporal sense, thus excluding cases like

10

on in an attack on Peter, or of in the destruction of Rome. (Other relations
providing 'prepositional’ relations include Snowball, Organization and
Part of; see especially comments to the latter.) Although these relations are
'real world' relations and not idiosyncratically related to specific words, no
independent characterizations are so far available for these relations, and in
the absence of such characterizations, it seems safest to use the prepositions
of the language to which the nouns to be classified belong.

What induces the form in (24b) ought to be the status of the words as
proper names, a feature formally marked elsewhere in the lexicon. Unlike the
schema illustrated in (6) and (7), the present cases involve three parameters
rather than two, viz. entryword, the specific preposition and valueword; a
counterpart to (7) with three lambda-operators rather than two will then be
used for translation from Script to Def.

Source of
Entrything is the place, person, organization etc. where valuething was
first created or came into existence.
Examples:
Italy: the mafia, chianti, fascism

Def representation:

(25) source-of(den(Italy),den(chianti))

Unit
Entrything standardly appears in the type of package or container
expressed by valueword.
Example:
beer:pitcher

Def representation:

(26) measured-in(den(beer), den(pitcher))

2.3. GROUP C.
Valuewords in this group represent what may rather loosely be called
‘properties’ of the instantiator of the entryword.

Adjective

Valueword is an adjective and expresses a prototypical property of
entrything.

Example:

11

12

knife: sharp
Def representation:

(27) inst(x,knife) ->> den(gharp)(x)

Color
Valueword expresses the prototypical color of entrything.
Example:

grass: green

Def representation:

(28) inst(x, grass) ->> den(green)(x)
This is a statement about any particular amount of grass.

“Texture
Valueword expresses the prototypical texture of entrything.
Example: :
fur: fuzz

Def representation:
(29) inst(x,fur) ->> has-the-texturc-of(x, den(fuzz))

This entry is a bit similar to MadeOf in subgroup Ba, the group for
constituency. Texture is still not constituency.

2.4. GROUP D.
This group contains relations between things and situations.

2.4.1. Subgroup Da. Relations between role-bearers and individual
situations.

Action

Entrything prototypically plays a role x with regard to (action) type of
situations instantiating valueword.

Examples (x indicated in parenthesis):
wind: blow (inher)
hose: spray (instr)
author: write (agent)

Def representation:

(30) inst(x,hose) ->> Ey[inst(y,spray) & Instr-of(x,y)]

This reads: if x instantiates hose, then prototypically there is an instantiation
y of spray which is'a situation, and x has the instrument-of relation to this
situation (which is tantamount to saying that x has the instrument 'role’ in
that situation).

Entryword is always a noun, valueword a verb. Like in the case of
Part of and Preposition, there are three parameters to be filled into the
general form, in this case those italicized in the path schema (31):

(31) entryword {
3 SemRel {

Action: valueword (role)

This is thus one more exception to the general pattern illustrated in (6) and
(7). The function in the present case looks as in (32),

(32) AzMuAv(inst(x,z) ->> Ey[inst(y,u) & v(x,y)]]
with the parameters marked in (31) to be .selectcd from left to right.

How

Valueword expresses the manner in which the action instantiating
entryword is done.

Example:

elbow: forcefully

Def representation:

(33) inst(y,glbow) ->> Ex[inst(x,forcefully) & Manner-of(x,y)]

1.3

It is not quite clear what kind of entity should be taken as instantiator of a
word like forcefully; all we have said here is that it can bear the manner
relation to situations. Notice that unlike Action, the name of the relation is
here used as attribute name, thus only two parameters are filled in in this
case. The same holds of the other attributes in this subgroup. If economy in
the Script-format were a goal, it would have sufficed with either the latter
strategy or that of the Action strategy exclusively; in the Def representation,
there is no difference. A pbssiblc reason for having the redundancy may be
that it maximizes completeness in the data loading.

Instrument

Valuething prototypically serves as instrument of the -action
instantiating entryword.

Example:

write: pen

Def representation:
234) inst(y,write) ->> Ex[inst(x,pen) & Instr-of(x,y)]

This is the same relation as the instrumental relation under Action, only
accessed in the opposite direction in Script.

Intensifier
Valueword expresses the manner in which the action instantiating
entryword is done, where the manner is some kind of intensifier.

Examples:
hurt: deeply
hit: hard
run: fast

Both in Script and Def notation, this is the same as How.

Purpose 1.

Entrything has been made with the purpose that it serve as instrument
for the action expressed by valueword.

Example:

bed: sleep

(35) inst(x,bed) -> purpose-of(x, Ey[inst(y,sleep) & instr-of(x,y)])

14

L5

This is very close to the instrumental relation under Action. It is possible
that the role interpretation could be wider, the crucial part being ‘purpose of".

Result
Valuething belongs to that subset of instruments which are called
Intermediary agents' (Marantz 1984) with regard to i, action or action-type
which is expressed by entryword.
Example:
music: instrument

Def representation (without specific marking of intermediary
agenthood):

(36) inst(x,music) ->> Ez[inst(z,instrument) & Instr-of(z,x)]
Where
Entrything is a typical location for the action expressed by valueword.

Example:
armpit: shave

Def representation:
(37) inst(x,armpit) ->> Ey[inst(y,shave) & location-of(x,y)]
2.4.2. Subgroup Db. Relations between things and 'fields' of situations.
Field 1
Entrything belongs in the ficld expressed by valueword.
Example: carpentry
Def representation:
(38) belongs-in-the-field(denthammer), den(carpentry))

Field 2
Entryword belongs in the field expressed by valueword.

abrakadabra: magic

Def representation:

(39) belongs-in-the-field(abrakadabra, den(magic))

When
The situation type expressed by entryword takes place at the time
expressed by valueword.
Example:
harvest:fall

(40) time-of(den(harvest), den(fall))

2.5. GROUP E.
In this group, both entryword and valueword are instantiated by situations,
called 'entrysituation’ and 'valuesituation', respectively.

Purpose 2
% Entrysituation has as its purpose to bring about valuesituation.
Examples: "
wash: clean
cook: eat

Def representation:
(41) inst(x,wash) ->> Ey[inst(y,clean) & purpose-of(x,y)]

It is possible that in the interesting cases of this type, one and the same
entity plays a role in both situations; thus, a pair like "kill:afraid" (xKlls y in
order to make z afraid, the terrorist strategy) does not come too naturally, as
opposed to "kill:scare" (x kills y in order that x scares z). If so, (41) might
be expanded to (42):

(42) inst(x,wash) ->> Ey[inst(y,clean) & purpose-of(x,y) &
Ez[plays-a-role-in(z,x) & plays-a-role-in(z,y)]]

A question by itself is what the criterion for 'being more interesting' is
in this case, and by what criteria we decide this. The set of relations
constructed ihere is supposed to be those which are 'natural' to the human
conception. Moreover, the example pairs used throughout are all easily
obtained through plain association. Should we then suppose that ease of
association reflects what are the more 'natural' relations, or does this only
serve as a preliminary criterion?

17

2.6. GROUP F.

The relations in this group may all be said to be higher order, obtaining
between relations or between properties.

2.6.1. Subgroup Fa. Non-numerical higher order relations.

Compare _
to be filled in

Homologous.
Entrything bears the same relation to some entity z as valuething does
to some entity w.
Example:
elbow: knee

Def representation:
(44) inst(x,clbow) & inst(y.knee) ->> ER,z,w[R(x,2) & R(y,w)]

Metaphor:
to be filled in

2.6.2. Subgroup Fb. Numerical higher order relations.

Cardinality
Valueword expresses the cardinality of those assemblies in which
entrything typically occurs.
Examples:
finger: 2x5
states: 50
lips: 2

Def representation:
(46) inst(x,lip) ->> Ey[part-of(x,y) & K{zl lip(z) & part-of(z,y)}=2]

'K (zl...)' means 'cardinality of the set of z such that z ...,

For finger, this format yields '5'; to get '10', we need access to the
whole of which the wholes relative to fingers - i.e., hands - are part. To get
this number as '2x5', we also must keep track of the number of hands. We
will not enter into these complexities here (which are not confined to fingers;
toes too has '2x5). Other problems arise when the 'part-of relation is
irrelevant: thus soccer has *11" or "2x11", without there being any part of a

soccer team which instantiates the noun soccer. It may be necessary to
specify various subrelations here.

Ordinality
Valueword expresses the ordinality of entrything with regard to that
ordered set with which entrything is most naturally associated.
Example: '
December: 12

2.7. GROUP G.
This group comprises those relations obtaining between linguistic items
which are not part of grammar proper.

Compounds (preliminary remarks)
The relation of word compounding is of particular interest in languages like
Norwegian and German. The constituents of a compound word by

themselves form a linguistic relation, which however expresses some real-

world relation. Which one differs in unpredictable ways from case to case,
but it is usually one which points to some interesting properties of (the
meaning of) the constituents involved.

In practice, each word will have two entries with regard to
compounding - one for those compounds where it is the head, and one for
those where it is the non-head, in LexScript called /ncorp(orated). They may
be called CompoundStem and CompoundIncorp, respectively. In each
case, we list all those compounds where the word occurs, and specify, for
each compound, the meaning of that compound. (In some cases this meaning
is predictable: when the compound performs a type of saturation specified in
SAF, and those cases where the world naturally allows for a certain
interpretation.)

Example (Norwegian):

pels
CompoundStem of: skinnpels, revepels
CompoundIncorp of: pelstyv
Def representation:

to be filled in

Idiom
to be filled in

18

19

2.8. GROUP H. MISCELLANEQUS.
This group is for relations which do not fit any of the above groups, and do
not yield any natural new group.

Appendix
The following attributes may belong to Semantics of TROLL, as a special
type of selection restrictions:

Limited object
Entryword is a verb whose theme-argument can denote only entities
instantiating words from the value-set.
Example:
brew: {coffee,tea)

Def representation:

-

(1) inst(x,brew) -> Ay[theme-of(y,x) <-> (inst(y,coffee) v inst(y,tea))]

By phrasing this in terms of 'theme' rather than 'object’, we immediately
cover e.g. passive constructions with the verb.

Limited subject:
‘ Entryword is a verb whose agent-argument can denote only entities
instantiating words from the value-set.
Example:
roar:lion

Def representation:
(2) inst(x,roar) -> Ay[agent-of(y,x) <-> inst(y,lion)]

‘Ay" means ‘for all y'. Instead of 'subject’, as occurs in the attribute name,
the definition uses 'agent’; this immediately covers constructions such as
"There roared a lion" (which is good in Norwegian). Notice that this
representation allows any expression to carry the role in question, as long as
the entity denoted is one which instantiates lion; thus, also "the king of the
animals” is predicted to be able to cooccur with roar, as is correct.
Correspondingly in the case of 'limited objects' above.

HPF. 72,

1[}31

Basic templates

(1) intransitive verb
SAF: <ag.np,ea>
Statement: iv

[Ex. Jon hopper]

(2) ergative

SAF: <th,np,gov>
Statement: erg

[Ex. _ruller stenen]

(3) experiencer intransitive verb
SAF: <exp,np,ea>

Statement: exp_iv

[Ex. Jon fryser]

(4) transitive verb

SAF: <ag,np,ea>,<th,np,gov>
Statement: tv

[Ex. Jon sparker ballen]

(5) theme transitive verb
SAF: <th,np,ea>,<th,np,gov>
Statement: th_ty

[Ex. papiret absorberer vannet]

(6) experiencer transitive verb
SAF: <exp,np,ea>,<th,np,gov>
Statement: exp_tv

[Ex. Jon liker glselever]

(7) ditransitive verb _

SAF: <ag,np,ea>,<ben,np,io>,<th,np,gov>
Statement: ditv

[Ex. Jon gir Per suppe]

(8) reflexive verb

SAF: <exp,np,ea>,<norole,seg,refl>
Statement: refl

[Ex. Jon skammer seg]

(9) psych verb

SAF: <exp,np,io>,<th,np,gov>
Statement: psych

[Ex. _ irriterer Jon katten]

(10) raising verb 1

SAF: <norole,seg,refl>,<th,at_S,gov>
Statement: raisvl

[Ex. _ viser seg at Jon er syk]

(11) raising verb 2

SAF: <prop_arg, cat, compl>
Statement: raisv2

[Ex. _ virker som om Per er syk]

(12) raising verb 3

SAF: <exp,np,io>,<th,at_S,gov>
Statement: raisv3

[Ex. _ synes meg at Per er syk]

(13) raising verb 4
SAF: <th,at_S function>
Statement: raisvd4(arg)
where arg is gov (default), pgov or a preposition
[Ex. _ later til at Jon er syk]

(14) depictive |
SAF: <ag,np,ea>,<norole,seg,refl> <th,np,gov>
Statement: depict

[Ex. Jon forestiller seg Per]

(15) small -clause

SAF: <ag,np,ea>,<scsu,np,gov>,<prd,ap,som>
Statement: smcl

[Ex. Jon anser Per som syk]

(16) intransitive verb locative
SAF: <X,np,ea>,<loc,Y,adv>
Statement: iv_loc(argl,arg2)
where argl is ag (default) or th, and arg? is pp (default) or advp
[Ex. Jon bor i Guatemala)

(17) reflexive verb locative
SAF: <X,np,ea>,<norole,seg,refl>,<loc,Y,adv>
Statement: refl_loc(argl,arg2)
where argl is ag (default) or th, and arg2 is pp (default) or advp
[Ex. Jon oppholder seg i Guatemala]

(18) transitive verb locative
SAF: <ag,np,ea>,<th,np,gov>,<loc,np function>
Statement: tv_loc(arg)

where arg is pgov (default) or a preposition
[Ex. Jon setter vasen pi bordet]

(19) indirect argument
SAF: <ag,np,ea>,<th,np.function>
Statement: ind_arg(arg)
where arg is pgov (default) or a preposition
[Ex. Jon stoler pd Per]

(20 indirect argument reflexive
SATL: <ag,np,ca">,<norolc,scg,rcfl>.<th,npfuncr£or:>
Statement: ind_arg_refl(arg)
where arg is pgov (default) or a preposition
[Ex. Jon forvisser seg om utfallet]

(21) weather verb

SAF: @

Statement: weather '
[Ex. _sngr]

(22) measure verb

SAF: <th,np,ea>,<measure,np,predic>
Statement: measure

[Ex. stenen veier 3 kg]

(23) representative

SAF: <th,np,ea>,<repr,np,gov>
Statement: repr

[Ex. bildet forestiller Jon]

(24) appellative 1
SAF: <ag,np,ea>,<scsu,np,gov>,<prd,npfunction>
Statement: appellatl(arg)

where arg is pgov (default) or a preposition
[Ex. Jon utnevner Per til konge]

-

(25) appellative 2
SAF: <ag, hp,ea>, <scsu, np,gov>,<prd,Y,predic>
Statement: appellat2(arg)
where arg is ap (default) or np
[Ex. Jon kaller Per Y]

(26) reflexive verb manner
SAF: <X,np,ea>,<norole,seg,refl>,<manner,Y,adv>
Statement: refl_manner(argl,arg2)
where argl i$ ag (default) or th, and arg? is advp (default) or pp
[Ex. Ola oppfgrte seg bra]

(27) ergative ditransitive
SAF: <ben,np,io>,<th,np,gov>
Statement: erg_ditv

[Ex. _ venter Jon en ulykke]

Arg uniformly replaces an italicized item. When there are two arg's (entred
‘(argl,arg2)"), argl replaces the leftmost italicized item in the SAF string.

ﬁ%ﬁp.'%:m

APF, 3

£3-10-1989 09:4¢D 40 IIcx:Derivation:D-rules for Verbs(intralex) Page 1

/* derivations */

'DO del' derivation [
- rkf (X, np,gov}) ->> rkf(X,rp,implarqg),
cond : ~ rkf(X,np,io),
l1f:nature: durative,
ex:"spise fisken"->>"spise"

'DO_to PP' ('Prep') derivation [
“saf : rkf(X,np,gov) ->> rkf(X,np, 'Prep'),
cond : [;
~ rkf(X,np,1i0),
default ('Prep',pgov),
range ('Prep', [pgov,all _prepositions])

11f: nature: durative,
ex: "spise fisken"->>"spise pa fisken"

'IO del' derivation [
“saf : rkf(X,np,io) ->> rkf(X,rp,implarg),
ex:"gl Jon penger"->>"gi penger"
1.
'Free IO ins' derivation [
saf : 0 ->> rkf(ben,np,io),
cond : rkf (X,np,gov), '
ex:"slakte en sau"->>"slakte Esau en sau"

] &

'IV_smallcl_ AP'{'Pred','Cat') derivation [
saf : [
" 0 ->> rkf(scsu,np,gov),
0 ->> rkf('Pred','Cat’,predic)
], '
cond : [
~ rkf (X, np,gov),
default ('Pred', prd),
range ('Pred’', (degprd, prd]),
default ('Cat', ap),

range ('Cat’', [word_x_ap,word_x_ap_excl,ap])

).

%$x 1s to be specified by the user.
11f:,
ex:"skyte"->>"skyte magasinet tomt™

Jus

'IV_smallcl_AdvP'('Pred','Cat') derivation ([
saf : [
0 ->> rkf(scsu,np,gov),
0 ->> rkf('Pred', 'Cat',predic)
|
cond : [
~ rkf (X, np,gov),
default ('Pred’',prd),
range ('Pred', [degprd, pxd]),
default ('Cat', advp),

range ('Cat', (word »_advp,word x_advp_excl, advp]))

LY E,
i

‘Zv_smallcl_PP‘{‘Pred','Cat'} derivation [
saf : [
0 ->> rkf(scsu,np,gov},

03-10-1989 09:46D 40 IIcx:Derivation

].

0 ->> rkf('Pred', 'Cat', predic)
1,
cond : [
~ rkf (X, np,gov),
default ('Pred', prd),
range ('Pred’', [degprd, prd]),
default('Cat',pp),
range ('Cat', (word_x_pp, ppl)
],
LYEYy

'TV_smallcl AP'('Pred','Cat') derivation [

1.

saf : [
rkf (X, np,gov)‘->> rkf (tvscsu, np, gov),
0 ->> rkf('Pred', 'Cat',predic)
Vs
cond: [
default ('Pred',prd),
range ('Pred', (degprd, prdl),
default ('Cat', ap),
range ('Cat', [word_x_ap,word_x_ap_excl,ap))
1
11.£3,
ex:"sparke ballen"->>"sparke ballen flat"

'TV_smallcl_Adv_P'('Pred','Cat') derivation [

l.

saf : |
rkf (X, np,gov) ->> rkf (tvscsu,np,gov),
0 ->> rkf('Pred', 'Cat',predic)

).

cond: [

default ('Pred', prd),range('Pred', (prd, degprd]),
default ('Cat’, advp),
. range({'Cat', [word_x_advp,word_x_advp excl,advp])

11f:, '

'TV_smallcl PP'('Pred','Cat') derivation [

].

“saf : [

rkf (X, np,gov) =->> rkf (tvscsu,np,qgov),
0 ->> rkf('Pred’', 'Cat',predic)

1.

cond: [
default ('Pred’', pxd),
range ('Pred’, [prd, degprd]),
default ('Cat',pp).,
range ('Cat', [word_x_pp,ppl)

1.

11f:,

'Depict' ('Cat') derivation [

].

saf: [
rkf (X, np,gov)->>rkf (scsu,np,gov},
0->>rkf(prd,'Cat',predic)
L
cond: [
default ('Cat',ap),
range ('Cat', [ap,pp))
1.,
LYE:;
ex:"like kaffen"->>"1ike kaffen varm"

'AcI' derivation [

:D-rules for Verbs(intralex)

Page 2

03-10-1989 09:46D 40 IIcx:Derivation:D-rules for Verbs(intralex) Page 3

saf: |
rkf(th,at_S§,gov)->>rfk(scsu, np, gov),
0->>(prd, inf, predic)

1.

1Y£:,

ex:"se at Jon kommer"->>"se Jon komme"

).

'CbjOual’ ('Cat') derivation [
saf:0->>xkf (prd; "Cat’,adjct);
cond: [
rkf (X, np,gov),
default ('Cat',ap),
range ('Cat', [ap, pp])
| '
11€£:,
ex:"drikke kaffen"->>"drikke kaffen varm"
]. ’

'CogObj' derivation [
saf : 0 ->> rkf (cogob,np,gov),
cond : ~ rkf(X,np,gov),
11f:,
ex:"de"->>"de en behagelig ded"
l.

'InhObj' derivation [
saf : 0 ->> rkf(inherob,np,gov),
cond : ~ rkf (X,np,gov),
LYEy,
ex: [
"spytte"->>"spytte spytt",
"skyte"->>"skyte plastikkuler"
]
l.

load _alt derivation [
saf : [!
rkf (inherob,np,gov) ->> rkf(inherob, np,med),
; rkf (target, np,pgov}) ->> rkf(target,np,gov)
, E
llf:nature: resultative,
ex:"laste h y pa vogna"->>"laste vogna med h y"

'Part_Wh_to_DO' derivation |
saf : |
rkf (target, pp,pp_arg) ->> rkf (part,pp,pp arg),
0 ->> rkf(whole,np, gov)
).
cond : ~ rkf(X,np,gov),
ex:"spytte i ansiktet til Jon"->>"spytte Jon i ansiktet™
].

'Part_Wh_to IO' derivation (
saf : [
rkf (target, pp,pp_arg) ->> rkf (part, pp,pp_arg),
0 ->> rkf(whole,np,io)
1,
cond : [
~ rkf (X, np,io},
rkf(Y,np,io)
1.
ex:"kaste n tter i hodet p& Jon"->>"kaste Jon n tter i hodet"

).

'Adv_to_DO' derivation [

03-10-1989 09:46D 40 IIcx:Derivation:D-rules for Verbs(intralex)

saf : rkf (path,X,Y) ->> rkf(path,np,gov),
cond : ~ rkf(A,B,gov),
ex:["ga veien ","jump the fence"]].

'Caus' derivation [
saf : 0 ->> rkf(agent,np,ea),
cond [~rkf(A,B,ea){rkf(C,D,gov)],
11f: [nature:sit,
str: sit2: [head:cause
compl:sitl
role_rel:ag_of((ag,np,ea),sit2)]
).
ex:"....koker vannet"->>"Jon koker vannet"
] ']
'Ea caus' derivation [
saf :
[rkf (X, np,ea) ->> rkf(X,np,gov),0 ->> rkf (agent,np,ea)],
cond : ~rkf(A,B,gov),
11f: [nature:sit,
str: sit2:[head: cause,
compl:sitl,
role_rel: ag_of(ag,np,ea),sit2)]
1,
ex:"the horse walked"->>"Jon walked the horse™

].

'pO_refl' derivation [
saf : rkf (X,np,gov) ->> rkf{noro}e,seg,refl),
I1E:;
ex:"Jon vasker NP"->>"Jon vasker seg"

].

'IO_refl' derivation [

saf : rkf(X,np,io) ->> rkf(norole, seqg,refl),

1165,

ex:"Jon kj pte NP en frakk"->>"Jon kj pte seg en frakk"
] =

'Pass_sh' derivation [
saf : rkf(X,np,ea) ->> rkf(X,rp,implargqg),
ex:"Jon leser boken"->>"...blir lest boken"].

'Pass lo' derivation [
saf : rkf(X,np,ea) ->> rkf(X,np,av),
cond: ~rkf(A,B,ea),
ex:"Jon leser boken"->>"blir lest boken av Jon"].

'Prom_to_ea' derivation [
saf : rkf(th,np,gov) ->> rkf(th,np,ea),
cond : ~rkf(A,B,ea),

ex:"koker vannet"->>"vannet koker"].

'Dem_ from ea' derivation [
saf : rkf(X,np,ea) ->> rkf(X,np,gov),
cond : ~ rkf(Y,Z,gov),
ex:"en katt satt i trappen"->>"satt en katt i trappen"].

det ins derivation [
“saf : 0 ->> rkf(norole,det there,ea),
cond : [~ rkf(X,Y,ea),rkf(X,at_S,gov);rkf(Y,2,compl)],
ex:"...satt en katt i trappen"->>"det satt en katt i trappen"].

det ins derivation [%lager her et nytt oppslag for det andre tilfellet.
“saf : 0 ->> rkf(norole,det it,ea),
cond : ~ rkf(X,Y,ea),
ex:",..satt en katt i trappen"->>"det satt en katt i trappen"].

Page 4

03-10-1989 09:46D 40 IIcx:Derivation:D-rules for Verbs(intralex)

'SuPredAd AP' ('Pred', 'Cat') derivation [

saf : 0 ->> rkf('Pred’,'Cat’,predic),
cond : [

~ rkf (X, np,gov),

default ('Pred',prd),

range ('Pred', [degprd, prd]),

default ('Cat',ap),

range ('Cat', [word_x_ap,word_x_ap_excl,ap])
),

ex:"g4 tom"].

'SuPredAd PP' ('Pred','Cat') derivation [

saf : 0 ->> rkf('Pred', 'Cat',predic),
cond : [
~ rkf (X, np,goV),
default ('Pred',dir),
range ('Pred', (dir, degprd]),
default ('Cat',pp).,
range ('Cat’', [word x_pp,ppl)
1.
Ik [
ex:"fly 1 v ret"].

'SuPredAd AdvP' ('Pred','Cat') derivation [

saf : 0 ->> rkf('Pred’','Cat',predic),
cond : [
5 = TRELK HD GOV,
default ('Pred',dir),
range ('Pred', (dir, degprd]),
default ('Cat', advp),

range ('Cat’, (word_x_advp,word x_advp_excl,advp])

1.
S [i
ex:"sovne"->>"sovne inn"

l.

'PP_ad' ('Role’', 'Prep') derivation [

“saf : 0 ->> rkf('Role’',np,'Prep'),
cond: [
default ('Role',unsp),
range ('Role', [unsp,all roles]),
default ('Prep',pgov),
range ('Prep', (pgov,all prepositions])
), :
1Lf:;
ex: [
"snakke"->>"snakke med Ola",
"snakke'"->>"snakke med Ola om Marit"

'"Incorp_predic_del (G)' derivation [
saf: [rkf(X,Y,predic)->>0,
0->>rkf (X, Y, incorp)],
cond:range (G, [a_ap,adv_advp],

ex:["sparke ballen bort"->>"bortsparke ballen",

"male huset r dt"->>"r dmale huset"]].

'Incorp adv_add' derivation |

saf: [rkf (X, advp, predic) ->>rkf (X, pp, pp_arg),
0->>rkf (X,adv_advp, incorp)],

awx:"Hente Jon inn fra slummen"->>"Innhente Jon fra

)i

'Incorp p do' derivation |

saf: [rkf (X, pp, pp_arg)->>rkf (X,np, gov),
0->>rkf (norole,p pp,incorp)],
ex:"tale om Jon"->>"omtale Jon"

slummen"

Page 5

03-10-1989 09:46ID 40 IIcx:Derivation:D-rules for Verbs(intralex) Page

L.

'"Incorp_p_io' derivation [
saf: [rkf (X, pp,pp_arg)->>rkf (X,np,io),
o->>rkf (norole,p pp,incorp)],
cond: [rkf (Y, np,gov),~xkf (Z,np,1i0)],
ex:"sende penger til Jon"->>"tilsende Jon penger"

].

'PredicMvt' ('Role’', 'Cat') derivation [
saf : rkf('Role',Y,predic) ->> rkf ('Role'’,Y,preposed predic),
cond : [.
rkf (A,B,gov),
default ('Role/ ,unsp),
range ('Role', [unsp,all_xroles]),
default('Cat',a_ap),
range ('Cat’', [adv_advp,a_ap]) p
)4
ex:"sparke ballen ut"->>"sparke ut ballen"

1.

'atS' ('Funk') derivation |
saf : rkf(th,np, 'Funk') ->> rkf(th,at S, 'Funk'),
cond: | -
default ('Funk', gov),
range ('Funk', (gov,ea,pgov,all predpositions])
% :
ex:"Per sa sannheten"->>"Per sa at han var syk").

"inf_regcontr' ('Funk') derivation [’
saf : rkf(th,np,'Funk') ->> rkf(th,a inf regcontr,'Funk'),
cond: [
default ('Funk',gov),
range ('Funk', [gov,ea, pgov,all prepositions])
1,
ex:"Per pr vde skoene"->>"Per pr vde & ga"].

'inf markcontr' ('Funk') derivation [
saf : rkf(th,np, '"Funk') =->> rkf(th,4a inf markcontr, 'Funk'),
cond: [s
default ('Funk', gov), i
range ('Funk', [gov,ea, pgov,all prepositions])
1s
ex:"Jon lovet Marit & ga"].

'inf arbcontr' ('Funk') derivation [
saf : rkf(th,np, '"Funk') ->> rkf(th,4 inf arbcontr,'Funk'),
cond: [-
default ('Funk’, gov),
range ('Funk', [gov,ea, pgov,all_prepositions])
)y :
ex:"vi snakket om det & sublimere seg"].

'hvS' ('"Funk') derivation [
saf:rkf (th,np, 'Funk')->>rkf (th,hv_S, 'Funk'),
cond: [
default ('Funk’', gov),
range ('Funk', [gov,pgov,all prepositions])
1y
11f =,

ex:"si sannheten"->>"si hvem som hadde gjort det"}.

'om3' ('Funk') derivation [
saf:rkf (th,np, '"Funk')->>rkf (th,om_S, 'Funk'),
cond: [default ('Funk',gov),range('Funk', [gov,pgov,all prepositions))],
ex:"lure pa svaret"->>"lure p4 om du hadde gjort det™).

'SubjRais’' ('Funk') derivation [

03-10-1989 09:46ID 40 IIcx:Derivation:D-rules for Verbs(intralex)

saf: [rkf (scsu, np, 'Funk')->>rkf (scsu, e, 'Funk'),0->>rkf (no,np,ea)],
cond: [default ('Funk', gov),range ('Funk', [gov,pgov])],
ex:"later til Per 4 v re syk"->>"Per later til [e] & v re syk"].

'0inf_to Predic_AP' derivation [
saf:rkf (prd, o_inf,predic)->>rkf (prd, ap, predic),
ex:"synes Jon a v re syk"->>"synes Jon syk"].

'ats_to_Cl _inf' ('Funk') derivation [

Page 7

saf: [rkf(th,at S, 'Funk') ->>rkf (scsu, np, 'Funk'), 0->>rkf (prd, o_inf,predic)],

cond: [default('Funk',gOV} range ('Funk', (gov,pgov])],
ex:"later til at Jon er syk"->>"later til Jon & v re syk"].

'Prop_compl_to_SC'('Som') derivation [

saf:[rkf{prop_arg;'Som',COmpl}~>>rkf{scsu,np,gov),0 >>rkf (prd, ap,predic)],

cond: [default ('Som', 'som_om_S'),range('Som', ['som_om_S', 'som S'])],
ex:"virker som om Jon er syk"->>"virker Jon syk"].

'RaisCop' ('Cat') derivation [

saf: (rkf(prop_arg, 'Cat’',compl)->>rkf (prop_arg, 'Cat',subj contr _compl},

0->>rkf (no,np,ea)],
cond: ~rkf(X,Y,ea),

ex:"virker som (om) Jon er syk"->>"Jon virker som (om) han er syk"].

'Anti_exp' ('Funk') derivation [
saf: rkf(th,at_S, 'Funk')->>rkf (th,at S,ea),
cond: ([default (' Funk',gov),range('Funk',[gov pgovl])],
exi"bekymrer meg at Jon kom"->>"at Jon kom bekymrer meg”].

"ExpMvt' derivation [:
saf: (rkf (exp,np, io) ->>rkf (exp, np, ea),
rkf (th, np,gov)->>rkf (th, np, over),
0->>rkf (norole, seqg,refl)],
ex:"irriterer meg katten"->>"jeg irriterer meg over katten"].

'for_oinf_ to_predic_som' ('Cat') derivation [
saf: rkf (prd,o_inf, for)->>rkf (prd, 'Cat', som),
cond: [default (Cat',ap),range{'Cat',{ap,np]}],
ex:"anse Jon for & v re skyldig"->>"anse Jon som skyldig"].

'Erg_refl' derivation [
saf: 0->>rkf (norole, seqg,refl),
cond: (~rkf(A,B,ea),rkf (th,np,gov)],
ex:"apner en d r"->>"apner seg en d r"].

'PP' ('Arg') derivation [
saf: rkf (prd,np,predic)->>rkf (prd, np, 'Arg'),

cond: (default('Arg',6 pgov),range('Arg', [pgov,all _Pprepositions])},
ex: "kalle Jon et geni"—>>"kalle Jon for et geni“],

'atS to SC' derivation [

saf :rkf(th,at_S,gov)->>rkf (scsu, np,gov),0->>rkf (prd, ap, predic),
S 2

ex:"forestille seg at Per er frisk"->>"forestille seg Per frisk"].

'atS _to_prop compl' derivation [
saf: rkf(th,at_s,gov)->>rkf (prop_arg, som_om_S, compl),
R e 2

ex:"det synes meg at Per er syk" ->>"det synes meg som om Per er syk"].

'Exp_del' derivation [
saf: rkf (exp,np,io)->>rkf (exp, rp,implarg),
ex:"irriterer Per vinden"->>"irriterer vinden"].

qu

'

19-08-1989 10:40 HD 40 IIcx:IOWGer:D-rules for Nouns,Adj,V

'Processl’' ('Prep','Aff','Comb’) derivation [
major_cat:N,
tsegmental (informal): Comb (H,Aff)
cond : range ('Aff!, [ingl,elsel,0]),
template: [

saf : [
rkf(ag,np,ea) ->> rkf (ag,np,gen) or rkf (aqg,rp,implarg) or rkf(ag,np,av) or rkf(ag,a_ap,attr),

rkf (th,np,gov) ->> rkf(th,np, 'Prep’') or rkf(th,rp,implarg) or rkf (th,n,incorp)],
0->>(ident,np, ea)
1,
cond, = |
default ('Prep',av),
wmsmmA_mHmﬁ_\HmdﬁmwwlwhmwOmHnHonmuuh
%rkf (th,np, 'Prep’) only in case there is no rkf (ag,np,av)
1,
11f:[nature:process
str:sitl]

Js
ex: ["Per bygger et hus" ->>"Pers bygging av huset” or "husbygging av Per" or

"bygging av huset" or "bygging av Per"or "byggingen"
]
l.

'Process2’' ('Aff','Comb') derivation [
major_cat:N,
5segmental (informal): Comb (H,Aff).
cond: range('Aff',[0,1),

template: [
saf : [rkf(X,np,ea) ->> rkf(X,np,gen) or rkf (X, rp,implarg) or rkf (X,n,incorp),

0->>(ident, np,ea)]
1lf:nature:process
1.
ex:"Kirken brenner"->>"kirkens brann” or "brannen" or"kirkebrann"

].

'Result3’' ('Aff','Comb’') derivation [
major_cat:N,
$segmental (informal) : Comb (H,Aff)
cond:range ('Aff',[st3,ning3,else3,1ing3,0]),
template: [
saf :[rkf(ag,np,ea) ->>0,
rkf (th, np,gov)->>rkf (th, np,ea)

3

muﬁ@n\h

1

16-086-1989 10:40 HD 40 IIcx:IOWGer:D-rules for Nouns,Adj,V

1.
11f: [nature:thing, result

str:[abstr: th,
body:sit:
role_rel:th of:rkf(th,np,ea)]

H,
ex: ["Per bygger et hus" ->> "bygningen"”,
"Ber: Tanger flusr"=ssrfangst™]

T
'Event4' ('Prep','Aff','Comb') derivation [
major_cat:N,
$segmental (informal): Comb (H,Aff)
cond:range ('Aff',[st4,0,]),

template: {
saf : ['
rkf (X,np,ea) ->> rkf(X,np,gen) or rkf(X,rp,implarg) or rkf(X,a_ap,attr),
rkf (th,np,gov)-> rkf (th,np, 'Prep') or rkf (th,rp,implarg) rkf(th,n,incorp),

0->>rkf (ident, np, ea)

1s
cond : [

default ('Prep',av),

range ('Prep', [av,all _prepositions])

),
11f:nature: event
ex: ["Kongen ankommer"->>"kongens ankomst” or "ankomsten" or "kongelig ankomst" or "ankomsten av kongen"

I,
"han myrder kongen"->>"hans mord pd kongen" or "kongemord" or "mord pa kongen”
"han bryter avtalen"->> "hans brudd pd avtalen” or "brudd pa avtalen" or "avtalebrudd"]

).
not as protracted as Processl or2

$Comment :
"EventS5!' ('Aff', "Comb'} derivation (
major_cat:N,
%$segmental (informal): comb (H,Aff)
cond:range ('Aff',[0,]),
template: [
saf : [rkf(X,np,ea) ->> 0,

0->>(event,np,ea)]
llf:nature:event

1.
ex:"Alle lpper"->>"sgndagens legp"

'Agent6’ ('Aff','Comb') derivation [

Page 2

19-08-1989 10:40 HD 40 IIcx:IOWGer:D-rules for Nouns, 2dj,V

major_cat: N,
$segmental (informal): Comb (H,Aff)

cond: [
default: ('Aff',er6),
range ('Aff', [er6,ing6,ator6, ent6])
. dE .
template: [
saf :

rkf (th,np,gov) ->>rkf(th,np,av) or rkf(th,rp,implarg) or rkf(th,n,incorp),

cond: [

default ('X',aqg),’

range ('X',[ag,ben])
1.
11f: [nature:thing

str:abstr:X,
body:sit:
role rel: ('of (X)'):rkf (X,np,ea),
th_of:rkf (th,np,av)

1,

"han mottar et brev"->>"mottakeren av brevet™ or.....
].

'‘Agent7' ('Aff', 'Comb') derivation [
major_cat:N
$segmental (informal): Comb (H,Aff)
cond : [
default: ('Aff',er?),
range ('Aff',[er7,ing7,ist7,ent7, ling7])
1,
template: [
saf :rkf (th,np,gov).->>0
1,
11f: [nature:thing,
str: [abstr:ag
body:sit:
role_rel:ag_of:rkf(ag,np,ea)]

1.
ex: ["han baker brgd"->>"baker",

"han 1 rer et yrke"->>1 rling"]
I

"Emotion8' ('X', 'Func','Aff','Comb') derivation [

ex:"han beundrer kunst"->>"beunderer av kunst" or "beunderer" or "kunstbeunderer",

%$Will be parameterized so as to include intermediate agents, i.e. promoted Instr.

Page 3

19-06-1985 10:40

T

HD 40 IIcx:IOWGer:D-rules for Nouns, Adj,V

major_cat:N,
%segmental (informal): Comb (H,Aff)
cond : [
default: ('Aff',else8),
range ('Aff', [else8,sjon8,ing8,0])
<
template: . .
saf: [rkf(X,np,ea) =->>rkf(X,np,gen) or rkf (X, rp,implarg) or rkf(X,a ap,attr),

rkf (th,np, "Func') ->>rkf (th,np, 'Func') or rkf (th,n,incorp) or rkf(th,implarg)
rkf‘norole, seqg,refl) ->>0

0->>rkf (ident, np,ea)
1,
cond: [default (X, exp),
ranie (X,all _roles),
default ('Func', gov),
range ('Func', [gov,pgov,all prepositions])],
llf:nature:emotion/state
1,
ex:["per fgler avmakt" ->>"pers fglelse av avmakt"or "pers avmaktsfelelse" or "nasjonal fwlelse av skam"”,
"per hater folket"->>"pers hat mot folket"or"pers folkehat",
"per tror pa Gud"->>"pers tro pa Gud","Pers Gudstro","Pers tro",
"per forelsker seg ->> "pers forelskelse"”,
"han beundrer kongen"->>"hans beundring for kongen"or "beundringen av Per for kongen"]
"Jon irriterer seg over naboen" ->>Jons irritasjon over naboen" or "norsk irritasjon over naboen",
"Jon skammer seqg over sin tabbe"” ->>"Jons skam over sin tabbe"
"Jon er forbauset over v ret" ->>"Jons forbauselse over v ret"]

'ConcreteN_with qualityA9' ('Aff', 'Comb') derivation [

major_cat:N,
%segmental (informal): Comb (H,Aff)
cond : [-
default: ('Aff',dom9),
range ('Aff', (dom,ling9,ing9,0])
1,

template: [
11f: [nature:thing
str: [abstr: (X,np,ea)
body:sit:[head:,
compl:,
role_rel: ('of(X) ') :Tkf (X, np,ea)

ex:["han er svak" ->>"svekling"”,

Page

4

19-08-1989 10:40

] 4

"han er ung"->>"ungdom",
"dette er hellig"- vv:smwwpoaoazu

'Qualityl0' ('Aff','Comb') derivation |

).

major_ cat:N,
%segmental (informal): Comb (H,Aff)
cond : [
default: ('Aff',hetl0),
range ('Aff', [hetl0,itetl0])
1,
template: [

saf : [rkf(X,np,ea) ->>rkf(X,np,gen)

0->>(ident, np, ea)
1,
llf:nature:quality
1

ex:"steinen er ekte"->>"steinens ekthet" or "ektheten av steinen"”

'Statell' ('Aff',’'Comb’') derivation [

major_cat:N,
$segmental (informal): Comb (H,Aff)

cond : range ('Aff’, [domll,skapll,0])

template: [

saf : rkf(X,np,ea) ->>rkf(X,np,gen)
0->>rkf (Y, np,ea)

llf:nature:state

1,

ex:["rik" ->>"rikdom",
"ung"->>"ungdom”,
"fangen"->>"fangenskap"]

'Setofl2' ('Aff','Comb') derivation [

major_cat:N,
$segmental (informal) : Comb (H,Aff)

coend:range ('Aff', [hetl2,skapl2,0]),

template: [
11f: [nature:group,
str:member]
1,
ex: ["menneske™ ->>"menneskehet”
"bror"->>"brorskap",
"prest"->>"presteskap"]

or rkf(X,np,av),

HD 40 IIcx:IOWGer:D-rules for Nouns,Adj,V

Page 5

15-08-1989 10:40
l.

"'Totalityof1l3' ('Aff', 'Comb')
major_cat:N,
$segmental (informal): Comb (H,Aff)

. cond: range ('Aff', [doml3,skapl3,0]),
template: [

11£f: nature:totalityof

derivation |

),

ex:"morskap"”, "brorskap", .

1«

'Mannerld4' ('Aff','Comb') derivation [
major_cat:N,
%segmental (informal): Comb (H,Aff)

cond: ('Aff',[selld,ingld]),
template: [

HD 40 IIcx:I0OWGer:D-rules for Nouns,Adj,V

saf: [rkf (ag,np,ea) ->>rkf (ag,np,gen) or rkf(ag,n,incorp),

rkf (norole, seqg,refl) ->>0,

rkf (manner, rp, implarg)->>rkf (manner, np, ea)
],

11f: [nature:manner,
str: [abstr:manner
body: sit:

role_rel:manner_of (manner,np,ea)
]

1,

ex: ["han oppforer seqg bra"->>"hans oppforsel",
"han lgper elegant”->>"hans lgping”]

'TP15' ('Func', 'Prep', 'ARff', 'Comb') derivation [.
major_cat:N,
¥segmental (informal): Comb (H,Aff)

cond: range('Aff', [elsel5,sjonl5,0,1ingl5,ningls])),
template: [

saf:

rkf (th,np, 'Func') ->> rkf(matter,np, 'Prep')

or meﬁamﬁmmﬁ\:v~@mbu\
0->>rkf (X, np,ea)

),
cond: [default ('Func',gov),

range (gov, pgov, (all prepositions]),
default ('Prep',pgov),

[rkf(ag,np,ea) ->> rkf(cre,np,gen) or rkf(cre,np,ved) or rkf(cre,adj,pred),

or rkf(matter,n,incorp) or rkf (matter,rp,implarqg)

Page

o0

19-08-1989 10:40 HD 40 IIcx:IOWGer:D-rules for Nouns,Adj,V Page 7

range ('Prep', [pgov,all_prepositions])

1,
11f:nature:thing

1,
ex:"beskrive" ->>"hans beskrivelse av saken" or "saksbeskrivelsen” or saksbeskrivelsen ved rektoren"-

..

'Eventlé’ (*'Prep', 'Aff', 'Comb’)
major_cat:N,
¥segmental (informal): Comb (H,Aff)

template: [
saf: [rkf (ag,np,ea) ->> rkf(ag,n,incorp) or rkf(ag,np,av) or rkf (ag,rp,implargqg),

rkf (th,np,gov)->>rkf (th,np,Prep) or rkf(th,rp,implarqg),
0->>xrkf (ident, np,ea)

derivation [

T
cond: [default('Prep’,pa),

range ('Prep', [p4,all_prepositions])

1,
ll1f:nature:event

_h
ex:"katten angriper naboen"->>kattens angrep pa naboen","kattzangrep", "angrep pa naboen”

$Comment: has AG-incorp, no TH-incorp.

'Locl7' ('Aff','Comb') derivation [
major_cat:N,
%segmental (informal): Comb (H,Aff)
cond:range ('Aff', [eril?7,0]),
template: [
saf: (rkf (ag,np,ea) ->> 0,
rkf (th,np, gov)->>0, :
rkf (loc, rp,implarg)->>rkf (loc,np,ea)
1. _
11f: [nature:location,
str: abstr:loc

body:sit:
role_rel:loc_of(loc,np,ea)]

1.
ex: ["bake"->>"bakeri",

"bryte"->>"steinbrudd"]

'Setofl9' ('Aff','Comb') derivation [

18-08-1989 10:40

HD 40 IIcx:IOWGer:D-rules for Nouns,Adj, Vv

major_cat: N,
%segmental (informal): Comb (H,Aff)

cond:range ('Aff', [hetl9,0]),
template: [

11f: [nature:group,
. str: state: [head: setof
compl:state]

1,
ex: ["almen"->>"almenhet",

"offentlig"->>"offentlighet”,

"myndig"->>"myndighetene"]
=

% Is probably included in 'Setofl12'.

'Possibility20' ('Aff', 'Comb') derivation |
major_cat:A,
$segmental (informal): Comb (H,Aff)

cond :range (('Aff', [bar20,1ig2l]),
template: |

saf :[rkf(ag,np,ea) ->>0,

rkf (th,np,gov) ->>rkf(th,np,ea),
0->rkf (exp,np, for),

% exp is identical to ag

1.

11f: [nature:possibility,
str: sit2: [head:possible,
compl:sitl,
role_rel:exp of{(exp,np,for),sit2)]
]
Js

ex:"han bruker hammeren"->>"hammeren er brukbar ™
1z

'Potentiality21' ('Aff','Comb')
major_cat:a,
%¥segmental (informal): Comb (H,Aff)
cond :range ('Aff',[bar2l,1lig2l]),
template: [
11f: (nature:potentiality,
str: [head:potential, *
compl:sit]

derivation [

1,

ex:"materialet brenner"->>"brennbar "

Page B

19-08-1989 10:40 HD 40 IIcx:IOWGer:D-rules for

l. :

'Potentiality22' ('Aff','Comb') derivation [
major_cat:Aa,
$segmental (informal): Comb (H,Aff)
. cond :range ('Aff',[lig22]),
template: [
saf :[rkf(X,np, 'Func')->>rkf (X,np,ea),
rkf (exp,np, 'Func')->>rkf (exp, np, for),
cond: [
default ('Func’,gov),
range ('Func', [gov,pgov, all prepositions])
%$'Func' has to be different on the 2 occurrences
1y :
11f: [nature:potentiality,
str: [head:potential to evoke
compl:sitl]
1.
ex:"Jeg ergrer meg over dette”->> "dette er ergerlig”
Y

MOﬂm:ﬂmewnmmu ﬁ_wmm_\,noav_v derivation [
major_cat:Aa,
%$segmental (informal): Comb (H,Aff)
cond :range ('Aff', (abel23]),
template: [
saf :[rkf(X,np, 'Func')->>rkf (X,np,ea),
cond: [default('Func’',gov),
range ('Func', (gov,io,pgov, all prepositions])
1,
11f: [nature:potentiality,
str: [head:potential to Umﬁﬁmmmu\
compl:sit]
1.
ex:["Jeg irriterer meg over dette"->> "jeg er irritabel™,
"Man kan diskutere saken"->>"saken er diskutabel”]}
].

'TypProperty24' ('Aff','Comb') derivation [
major_cat:A,
%segmental (informal): Comb (H,Aff)
cond :range ('Aff', [som24,1ig24]),
template:
saf : rkf(X,np,gov)->>rkf (X, np, 'Prep’'),

Nouns, Adj,V

Page 8

19-08-1989 10:40 HD 40 IIcx:IOWGer:D-rules for
cond: [default ('Prep',pa),
range ('Prep',all prepositions)],
llf:nature:property
Ey |
ex: ["han prater mye "->>"han er pratsom”, .
"han misunner meg"->> "han er misunnelig pa meg",
"han st&r pa sitt"->>"han er pastaelig"]

'Neg26' ('Aff', 'Comb’') derivation [

major_cat: id,
%segmental (informal): Comb (H,Aff)

cond :range ('Aff', [u26,in26]),
template: [

saf :id,

11f: [nature:Property

str:property2: [head:negation
compl: propertyl]

]

ex:"leselig"->> "uleselig"
8

'Totalityof27' ('Aff','Comb') derivation [
major_cat:N,
$segmental (informal): Comb (H,Aff)
cond: range ('Aff',[dom27,0]),
template: [
saf:rkf (ag,np,ea)->>0,
11f:[nature:totalityof
str:head:
role rel: th of (th,np,ea)]
1s
ex:"1l rdom"
].

$Idem Totalityofl3' if base category is irrelevant or parameterized.

'be _alt28' derivation [v
major cat: id,
$segmental (informal) : Comb (H, 'Aff'),
cond: range ('Aff',be28) .

template: [
aaf w0 T

Nouns,Adj,V

Page 1

15-08-1969 10:40 HD 40 IIcAx:IOWGer:D-rules for

rkf (target, np,pgov) ->> rkf (target, np, gov) o
1,
11f: [nature:sit,
str:[sit:
head:,
% : role_rel:,

]

I

ex:"skyte plastikkuler pa Jon"->>"beskyte Jon med plastikkuler™
1.)
% Add intensionality feature. (To ea or to sit?).

'ExpAdj29' ('Prep','Func','Aff’', 'Comb') derivation [
major_cat: A,
%segmental (informal): Comb(H,'Aff'),
cond: range ('Aff',t29)
template: [
saf: [rkf (exp,np, 'Func') ->>rkf (exp, np, ea),
rkf (th,np,gov)->>rkf (th, np, 'Prep')
1,
cond: [default ('Prep', over),
ranje ('Prep',all prepositions)
default ('Func', io)
range ('Func’,all functions],
11f: [nature: state
str: [head:result,
compl:sitl]

1,
ex:"irriterer meg katten”->>"jeg er irritert over katten",
"jeg ergrer meg over dette"->>"jeg er ergerlig"].

'be_alt30' derivation [
major_cat:v,
tsegmental (informal): Comb (H, 'Aff'),
cond: range ('Aff',be30)
template: [
saf : |
0->>rkf (ag, np,ea),
rkf (th,np,ea) ->> 0, }
0->> rkf(th,np,gov)
1.
11f: [nature:sit,
str:sitl: [head:cause,

Nouns, Adj, V

Page 11

19-08-1989 10:40 HD 40 ITcx:IOWGer:D-rules for Nouns,Adj,V Page 1:Z

compl:state, "
rple-rel:aqg of (lag:ppsealsit2) 1,
1,
ex: ["rik"->>"berike livet med lesning",
"fri"->>"befri noen fra lenker",
- "rolig"->>berolige noen"]

wH

Appendix 4 Infleksjonsparadigmer

Adjektiver

al := set # [
(form : (<-),infl : m_f sg,'LLF' : log_m f sg],
[form : (<-) + "t",infl : n_sg, 'LLF' : log_n_sg],
[Eorm : (<-)}) + "e",infl : pl,'LLF' : log pl]

1.

a2z := set # [,
(form : (<-),infl : m f sg,'LLF' : log m f sg],
(form : (<-),infl : n_sg,'LLF' : log_n_sgl,
(form : (<-) + “e",infl : pl,'LLF' : log pl]

1.

ajd := set # [
[form : (<-),infl : m £ _sqg,'LLF' : log m f sg],
[form : (<-),infl : n_sg, 'LLF' : log_n_sqgl,
[form : (<-),infl : pl,'LLF' : log_pl]

1.

a4 := set # [:

- [form : (<-},infl : m f sg,'LLF"' : log_m £ sgl,

(form : (<-),infl : n_sg, 'LLF' : log_n_sg],
[form : (<-) + "e",infl : pl,'LLF"* : log pl)

]. ’

a5 := set # [
[form : (<-),infl : m _f sqg,'LLF' : log m f sg],
[form : (<-) + "t",infl : n_sg, 'LLF' : log_n_sgl,
[form : (<=) = (<-=) < [1,2]) + (<-) :< 1 + "e",infl

'"LLF' : log_pl]

Nomener

nl := set ¥ [
(form : (<-),infl : sg_ind,'LLF"' : log _sg_ind],
[form : (<-) + "et™,infl : sg d,'LLF' : log_sg d],
(form : (<-),infl : pl_ind, 'LLF' : log_pl ind],
(form : (<-) + "ene",infl : pl_d,'LLF' : log_pl d]

1.

n2 := set # [
[form : (<-),infl : sg_ind, 'LLF' : log_ sg_ind],
(form : (<-) + "t",infl : sg_d,'LLF' : log sg_d),
(form : (<=} + "r",infl : pl_ind, 'LLF' : log_pl_ind],
(form : (<-) + "ne",infl : pl_d,'LLF' : log pl_d)

]

n3 := set # [
(form : (<-),infl : sg_ind,'LLF' : log_sg_ind],
(form : (<-) + "et",infl : sg_d,'LLF' : log_sg dl],
(form : (<-) + "er",infl : pl_ind, 'LLF' : log pl_ind),

[form : (<-) + "ene",infl : pl_d, 'LLF' : log_pl d]

pl,

Appendix 4 Infleksjonsparadigmer

n4 := set # (
[form (<=),infl sg_ind, 'LLF' log sg_ind],
[form {(<=) + "et",infl sg_d, '"LLF’ log_sg_d],
[form (<-) + "er",infl pl_ind, 'LLF' log_pl_ ind],
[form (<-) + "ene",infl pl_d, 'LLF' log pl d)

1.

£l := set # [
[form (<-=),1infl sg_ind, 'LLF' log_sg_ind],
[form (<-) + "a",infl sg_d, 'LLF' log_sg_d],
fform : (<-) + "er",infl : pl ind, "LLF' log_pl ind],
[form : ({<-) + "ene",infl pl _d, 'LLF' log pl_d]

1.

£f2 := set # (
(form (<-),infl sg_ind, 'LLF" log_sg_ind],
(form (<=) - “e" + "a",infl sg_d, "LLF" log_sg_dJ,
[form (<-) + "r",infl pl_ind, 'LLF' log_pl_ind],
[form (<-) + "ne",infl : pl_d, 'LLF' log pl _d]

1.

ml := set # [
[form : {<=),infl sg_ind, 'LLF' log_sg ind],
[form (<-) + "en",infl sg _d, 'LLF' lgg_sg_d],
[form {<-) + "er™,infl pl_ind, 'LLF' log_pl_ind],

. [form (<-) + "ene",infl : pl _d, 'LLF’ log pl d)

1. 4

m2 := set # [
[form : {(<-),infl sg_ind, 'LLF' log_sg_ind],
[form {(<=) + "n",infl sg_d, 'LLF* log_sg _d],
[form : (<-) + "r",infl pl_ind, 'LLF' log_pl_ind],
(form : (<-) + "ne",infl pl_d, 'LLF' log_pl_d]

1.

m3 := set # [
[form : (<-),infl sg_ind, '"LLF' log_sg ind],
[Eorm: 3z [<=) <+ Men™, anfl sg_d, 'LLF' log sg dJj,
(form (<-) + “e",infl : pl_ind,'LLF' : log pl_ind),
[form {(<-) + "ne",infl pl d, 'LLF! log _pl_d]

1.

Verber

vl := set # [
(form (<-),infl inf, 'LLF" log_inf],
[form (<=} + "r",infl pres, 'LLF' log_pres],
[form {<=) + "t",infl past, 'LLE' log_past],
[form {<=) + "t",infl past_p, 'LLF' log_past_p],
[form (<-) + "nde",infl pres _p, 'LLF' log_pres_p]

].

v2 := set # [
(form (<=),infl inf, 'LLF" log_inf],
[form : (<-) + "r",infl pres, 'LLF! log_pres],
(form : (<-) - “e" + Mgea',infl past, 'LLF' log_past],
(form (<=) = "e" + "g",infl past_p, "LLE' log_past_p],
(form (<~} + "nde",infl pres_p, 'LLF log pres_p]

Appendix 4 Infleksjonsparadigmer

v3

v

v5

vb

v

v

vy

= set # [
[form : (<=),infl : inf, 'LLF' : log_inf],
[form : (<-) + "r",infl : pres,'LLF' : log pres],
[form : (<-) - "e" + "de",infl : past,'LLF' ; log past],
[form : (<=) - "e" + "d",infl : past_p,'LLF"' : log_past_p],
[form : (<~) + "nde",infl : pres_p, 'LLF' : leog_pres_p]

= set # |
[form : (<=),infl : inf,'LLF' : log_inf],
(form : (<-) + "r",infl : pres,'LLF' : log_pres],
(form : (<-) + "dde",infl : past, 'LLF' : log past],
[form : (<-) + "dd",infl : past_p, 'LLF' : log past_p],
(form : (<-) + "ende",infl : pres_p, 'LLF' : log_pres_p]

= set # [
[form : (<=),infl : inf,'LLF' : log_inf],
[form : (<=) - (<-) :< [1,2],infl : pres,'LLF' : log_pres]),
[form : omlyd((<-),"u") - (<=} :< [1,2] + "te",infl : past,

'LLF' : log past],
[form : omlyd({ (<-),"u") - (<=} :< [1,2) + "t",infl : past_p,

'LLF' : log_past_p],
[form : (<-) + "nde",infl : pres_p, "LLF' : log_pres_p)

1= set # [
[form : (<-),infl : inf,'LLF'-: log inf],
(form : (<-) + "r",infl : pres,'LLF' : log pres],
(form : omlyd((<-),"e") - "e",infl : past,'LLF' : log past],’
[form : omlyd((<-),"e") + "t",infl : past_p,

'LLE' : log past_p],
[form : (<-) + "nde",infl : pres_p, "LLF' : log pres_p]

= set # [:
[form : (<-),infl : inf, 'LLF' : log_inf],
[form : (<-) + “r",infl : pres, 'LLF' : log_pres],
[form : omlyd((<-),"e"™) - "e",infl : past, 'LLF' : log_past],
[form : (<=) - "e" + "t",infl : past_p,'LLF' : log_past_pl,
[form : (<-) + "nde",infl : pres p,'LLF' : log_pres_p]

= set # [
[form : (<-),infl : inf,'LLF' : log_inf],
[form : (<-) + "r",infl : pres, 'LLF' : log_pres],
[form : omlyd((<-),"ei")},infl : past,'LLF' : log past],
[form : (<~} + "dd",infl : past_p, 'LLF' : log_past_p],
[form : (<-) + "dende",infl : pres_p, 'LLF' : log pres p]

= set # |
[(form : (<-),infl : inf, 'LLF' : log inf),
(form : (<-) + "r",infl : pres,'LLF' : log_pres],
[form : omlyd((<-),"\277") - "e",infl : past,

'LLF' : log past],

(form : omlyd((<-),"\277") + "t",infl : past_p,

'LLF' : log_past_p],

(form : (<-) + "nde",infl : pres_p, 'LLF' : log pres p]

Appendix 4 Infleksjonsparadigmer
v1l0 := set # [
[form (<-),infl : inf,'LLF' : log_inf],
[form (<-) + "r",infl : pres,'LLF' : log pres],
[form omlyd((<-),"\277") - "e",infl : past,
'*LLF' log_past]),
[form : (<-) = "e" + "t“,infl : past_p,'LLF' : log_past_p],
[form (<-) + "nde",infl : pres_p, "LLF' : log_pres_pl
1
vlil := set # [
[form - (<=),infl : inf,'LLF' : log_inf],
[form (<=) + "r",infl : pres,'LLF' : log pres],
[form : omlyd((<-),"\277") + "d",infl : past,
'LLF' : log_past]’,
[form : (<-) + "dd",infl : past_p, 'LLF' : log_past_p],
[form (<-) + "dende",infl : pres_p, 'LLF' : log_pres_p]
1. P
v1lZz := set # [
[form (<-),infl : inf,'LLF' : log_inf],
[form (<-) + "r»,infl : pres,'LLF' : log_pres],
[form omlyd((<-),"a"™) - "e",infl : past,'LLF' : log past],
[form omlyd((<-),"u") + "t",infl : past_p,
'LLE' log_past_p],
[form : (<-) + "nde",infl : pres_p,'LLF' : log_pres_ p]
Aeas s
vl3 := set # |
[form (<=),infl : inf,'LLF' : log_inf]),
[form (<) + "r",infl : pres, 'LLF' : log_pres], .
[form omlyd((<-),"a") - "e",infl : past,'LLF' : log past],
[form omlyd((<=),"\214") + "t",infl : past_p,
'LLE! log _past_p],
[form : (<-) + "nde",infl : pres_p, 'LLF"' : log_pres_p]
] s
vld := set # [
[form (<-),infl : inf,'LLF' : log_inf],
[form : (<-) + "r",infl : pres, 'LLF' : log pres],
[form omlyd((<-),"a"™) - "e",infl : past,'LLF' : log_past],
[form (<-) + "t",infl : past_p, 'LLF' : log_past_pl,
[form (<=) + "nde",infl : pres_p,'LLF' : log_pres_pl
]. .
vlS := set # [
[form (<-),infl : inf,'LLF' : log_ inf],
[form (<=) + "r",infl : pres, 'LLF' : log pres],
[form omlyd((<-),"a") - "e",infl : past, 'LLF' : log_past],
[form (<=) - "e" + "t",infl : past_p, 'LLF' : log past_p),
[form (<-) + "nde",infl : pres_p,'LLF' : log pres_p]
].
vle := set # |
[form (<=),infl : inf, 'LLF' : log_inf],
[form (<-) + "r",infl : pres,'LLF' : log pres],
[form omlyd({ (<-),"i") + "kk",infl : past,'LLF' : log_past],
[form (<=) + “tt",infl : past_p,'LLF' : log_past p],
[form (<-) + "ende",infl : pres_p, 'LLF' : log_pres_ p]

Appendix 4 Infleksjonsparadigmer
v1l7 := set # [
[form : (<-),infl inf, "LLF' log _inf],
(form (<-=) + "r",infl pres, 'LLF' log _pres],
[form (<-) - "e",infl past, 'LLF' log_past],
[form {<=) + "t",infl past_p, 'LLF!' log past_p],
[form {<-) + "nde",infl pres_p, 'LLF' log_pres_p)
Iz
v1l8 := set # [
[form : (<-),infl inf, 'LLF° log_inf],
[form {(<-) + "rv,infl pres, 'LLF' log_pres],
[form omlyd((<-),"a") - "e" + “t",infl past,
'LLE! log_past],
[form : omlyd((<-),"u") + "t",infl : past_p,
'LLE! log_past_p],
(form : (<-) + "nde",infl : pres_p, 'LLF' log_pres_p]
1. ‘
v1l9 := set # [
[form (<=),infl inf, 'LLF" log_inf],
[form (<=) + "r",infl pres, 'LLF' log_pres],
[form omlyd((<-),"a") - "e"™ + "t",infl past,
'LLF! log_past],
[form : (<) = MW s W gl past_p, 'LLF® log_past_p],
[form (<=} + "nde",infl : pres_p, 'LLF' log_pres_p])

4v il

0-1989 14:11 HD 40 IIcx:Derivation:non-infl-affixes Page 1

Preliminary list of affixes

ingl : spising, @deleggelse, bedervelse
elsel: pdeleggelse, bedervelse
0:Process2:brann

st3: fangst, hogst, bakst
ning3: bygning,

ling3: forsamling, samling
else3: ogdeleggelsene, forstyrrelsene
0:Result3: funn

std4: ankomst

0:Eventd:mord

er6 : beunderer av kunst,
ing6: arving !

ator6: initiator

ent6: dirigent

er7 : baker

ent7:dirigent

ist7:

ing7:

else8: forbauselse,
sjon8:irritasjon

ing8: forundring
ing9:luring, raping

ling%: svekling

dom9: ungdom, helligdom
hetl0: ekthet -

domll: ungdom

skapll: fangenskap

het 12: menneskehet

skapl2: presteskap

skapl3: morskap, forfatterskap
doml3: alderdom, barndom
selld: oppfersel

ingl4: leping

ingl5: fortelling '
ningl5: forelesning

elsel5: beskrivelse

elsel7: forelskelse

sjonl7:

ingl7: beundring

lingl8:1 rling

het1l9: myndighetene

1ig20: spiselig

bar20: brukbar,kjsrbar
lig21:

bar2l: brennbar

lig22: skammelig, ergerlig
abelZ23: diskutabel,irritabel
som24: pratsom

1ig25: ergerlig

u26: uleselig

in26: inabsorberbar

b

'
03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences

x»template(l,iv,
['Per skyter' : [basic : base],
'det g\214r en mann'
([detins : base ++ 'Dem_from_ea' ++ det ins],

'"Per synger en sang' : ['CogObj' : base ++ 'CogObj'],
'ble sunget en sang ' :

['CogObj Pass' : base ++ 'CogObj' ++ 'Pass'],
'Per sang henne en sang'

['FreeIOins' : base ++ 'CogObj' ++ 'Free IO ins'],
'"Per g\214r seg en tur'

['IOrefl’ : base ++ 'CogObj' ++ 'Free IO ins' ++ 'I0O refl'],
'Per skyter kuler' : ['InhObj' : base ¥+ 'InhObj'],
'ble skutt kuler’

['InhObj Pass' : base ++ 'InhObj’' ++ 'Pass'],

'"Per skyter kulene bort'
['TVsmallclAdvP' : base ++ 'InhObj' ++ 'TV_smallcl AdvP'],

'ble skutt kulene bort’
['TVsmallclAdvP_Pass'
base ++ 'InhObj' ++ 'TV_smallcl AdvP' ++ 'Pass'],
'"Per skyter bort kulene'
['TVvsmallclAdvP_ PredicMvt'
base ++ 'InhObj' ++ 'TV_smallcl AdvP' ++
'PredicMvt' (_217, 218)],
'ble skutt bort kulene'
['TVsmallclAdvP_PredicMvt Pass' :
base ++ 'InhObj' ++ 'TV_smallcl AdvP' ++
'"PredicMvt' (355, 356) ++ 'Pass'],
'Per bortskyter kuler'
['TVsmallclAdvP IncorpAdv' :
base ++ 'InhObj' ++ 'TV_smallcl AdvP' ++
"Incorp_Adv' (_487, 488)],
'ble bortskutt kulene'
['TVsmallclAdvP_ IncorpAdv'
base ++ 'InhObj' ++ 'TV_smallcl AdvP' ++
'Incorp Adv' (_622, 623) ++ 'Pass'],
'Per skyter kulene varme'
['TVsmallclAP' : base ++ 'InhObj' ++ 'TV_smallcl AP'],
'ble skutt kulene varme!' ' -
['TVsmallclAP_Pass'
base ++ 'InhObj' ++ 'TV_smallcl AP' ++ 'Pass'],
'Per skyter varm kulene' -
['TVsmallclAP_PredicmMmvt'
base ++ 'InhObj' ++ 'TV_smallcl AP' ++
'PredicMvt’ (792, 793)7, B
'blir skutt varm kulene'
['TVsmallclAP_ PredicMvt!'
base ++ 'InhObj' ++ 'TV_smallcl AP' ++
'PredicMvt' (930, 931) ++ 'Pass'],
'Per varmskyter kuler'
['TVsmallclAP IncorpA'
base ++ 'InhObj' ++ 'TV_smallcl AP' ++
'"Incorp A'(1057, 1058)]},
'ble varmskutt kulene'
['TVsmallclAP_IncorpA_ Pass'
base ++ 'InhObj' ++ 'TV_smallcl_ AP' ++
"Incorp_A'(_ 1181, 1182) ++ 'Pass'],
'Per skyter kulene i lufta'
('TVsmallclPP' : base ++ 'InhObj' ++ 'TV_smallcl PP'],
'ble skutt kulene i lufta' -
['TVsmallclPP_Pass'
base ++ 'InhObj' ++ 'TV_smallcl PP' ++ 'Pass'],
'Per skyter kuler p\214 Jon'
('InhObj PPad'
base ++ 'InhObj' ++ 'PP_ad'(_ 1337, 1338)],
‘blir skutt kuler p\214 Jon' -
('InhObj PPad Pass'
base ++ 'InhObj' ++ 'PP_ad'(_1454, 1455) ++ 'Pass'],
'Per maler veggen med'

APP. ¢

Page 1

03-106-1989 10:01 HD 40 IIcx:Derivation:

['InhObj_PPad loadalt'
base ++ 'InhObj' ++
'blir malt veggen med!'

"PP_ad' (1929,

['InhObj_PPad_loadalt_Pass'’

base ++ 'INhObj' ++
'Per maler seqg med’

'PP_ad' (_2049,

('"InhObj PPad loadalt _DOrefl!

base ++ 'InhObj' ++
'DO_refl'],
'"Per synger julen inn'

('IVsmallclAdvP' : base ++

'ble sunget julen inn'
['IVsmallclAdvP_Pass'
'Per synger inn julen'

'"PP_ad'(2170,

base ++ 'IV_smallcl AdvP' ++ 'Pass’

('IVsmallclAdvP PredicMvt'®
base ++ 'IV_smallcl AdvP' ++ ‘PredicMvi? { 2324, 2325)],

'blir sunget inn julen'

('IVsmallclAdvP_PredicMvt - Pasg!

base ++ 'IV_smallcl AdvP' ++ '"PredicMvt’ (_2458, 2459) ++

'innsynge julen'

['IVsmallclAdvP IncorpAdv’

base ++ 'IV_smallcl AdvP' ++ 'Incorp Adv' (_ 2587

'ble innsunget julen’'

['IVsmallclAdvP_IncorpAdv_Pass'
base ++ 'IV_smallcl AdvP' ++ 'Incorp_Adv' (_2718, 2719)

'Per g\214r seg bort'

_1930)

_2050)

_2171)

Intralex-D-sequences

++ lcad_alt],

++ load_alt ++

++ load_alt ++

'IV_smallcl AdvP'],

,_2588)],

++

'Pass'],

1,

'Pass'),

['IVsmallclAdvP_DOrefl' : base ++ 'IV_smallcl AdvP' ++ DO refl'],
'Per g\21l4r skoene skeive'

('IVsmallclAP' : base ++

'blir g\214tt skoene skeive'

['IVsmallclAP Pass'

base ++

'Per sitter flat putene'’
['IVsmallclAP_PredicMvt'
base ++ 'IV_smallcl AP' ++ 'PredicMvt’ (_2895, 2896)],
'ble sittet flat putene' :
['IVsmallclAP_PredicMvt _Pass!
base ++ 'IV_smallcl AP' ++ 'PredicMvt’' (_3030,_ 3031) ++

'flatsitte puten'
(['IVsmallclAP_IncorpAa'’

'IV_ smallcl _AP'],

'IV_smallcl_AP' ++ 'Pass'],

base ++ 'IV_smallcl_AP' ++ 'Incorp_A'(_3153, 3154)],

'pble flatsittet puten'

['"IVsmallclAP _IncorpA Pass'
base ++ ‘IV smallcl_AP' ++ 'Incorp_ A'(_ 3273, 3274) ++ 'Pass'],

'Per g\214r seg glad'
['IVsmallclAP DOrefl!

['IVsmallclPP' : base ++

'Pass'],

| base ++ 'IV_smallcl_AP' ++ 'DO refl'],
'Per synger Jon i godt hum\277r'

'blir sunget i godt hum\277r 7

['IVsmallclPP Pass' : base ++

p\2141\27?pe familien en sykdom'

['IVsmallclPP _IncorpP'

'IV_smallcl PP'],

'IV_smallcl PP' ++ 'Pass'],

base ++ 'IV_smallcl PP' ++ '"Incorp_P'(_3440, 3441)],
'ble p\2141\277pt en sykdom'
('IVsmallclPP_IncorpP_ Pass'
base ++ 'IV_smallcl PP' ++ 'Incorp_P'(_3564, 3565) ++ 'Pass'],
'synge seg i godt hum\277r'
base ++ 'IV_smallcl_PP' ++ 'DO refl'],

['IVsmallclPP_ DOrefl!

'Per g\214r ut' : [’'SuPredAdAdvp'

'ble g\21l4tt ut' :
('SuPredAdAdvP_Pass'
Irristen utg\2l4r!

base ++ 'SuPredAd AdvP' ++ 'Pass'),

['SuPredAdAdvP_IncorpAdv’
base ++ 'SuPredAd AdvP' ++ 'Incorp_Adv' (_ 3736, 3737)],

'Motoren g\214r tom'

['SuPredAdAp'

'Per g\2l4r fra b\2l4ten'

['SuPredAdPP' : base ++

'Per snakker med Jon'!

('PPad' : base ++ 'PP_ad' (_3882

base ++
'SuPredAd PP'],

._3883)1],

base ++ 'SuPredAd AdvpP'],

'SuPredAd AP'],

'Pass'],

Page 2

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences

'ble snakket med Jon'

['PPad_Pass' : base ++ 'PP_ad'(_3996,

'Per taler med Jon om mat'

['PPad_PPad’
base ++ 'PP_ad' (_4206,
'ble talt med Jon om mat'
['PPad_PPad_Pass'
base ++ 'PP_ad' (_44189,
'Per omtaler v\276ret'’
['PPad_IncorpP' :
base ++ 'PP_ad' (_46386,
'blir omtalt v\276ret’
['PPad_IncorpP_Pass' :
base ++ 'PP ad'(4857,
'Pass'],
"Per maler veggen'
['PPad_loadalt'
base ++ 'PP_ad' (_5318,
'blir malt veggen' :
['PPad loadalt Pass' :
base ++ 'PP ad'(5435,
'Per maler seg' :
('PPad_loadalt_DOrefl' :
base ++ 'PP ad'(5552,
'Per skyter Jon i hodet'
['PartWhtoDO'
base ++ 'PP_ad'(_ 5665,
'blir skutt i hodet Jon'
['"PartWwhtoDO Pass' :
base ++ 'PP_ad'(5782,
'Per skyter seg i foten'
['PartWhtoDO_DOrefl'
base ++ 'PP _ad' (_5899,

_4420) ++ 'PP_ad'(_ 4319,

4858) ++ 'Incorp P'(_ 4754,

_5436) ++ load_alt ++

_5553) ++ load_alt ++

_4207) ++ 'pp_ad' (_4106,

_4637) ++ 'Incorp P'(_4533,

_5319) ++ load_alt],

410

432

_5666) ++ 'Part_Wh to DO'],

_5783) ++ 'Part_Wh_to_ DO’

_5900) ++ 'Part_Wh _to_DO!

++

++

'Pass']]).

'Prom_to_ea'],
'Caus'],

'Per g\214r veien' : ['AdvtoDO!' base ++
"blir g\214tt veien'
['AdvtoDO_Pass' : base ++ 'Adv_to DO' ++
xtemplate (2, erg,
['koker vannet' : [basic base],
'det koker vann' : [detins base ++ det ins],
'Vannet koker' : ['Promtoea' base ++ 'P
'Per koker vannét' : ['Caus’' base ++
'Per koker vannet bort'
['TVsmallclAdvP' : base ++ !'"Caus' ++

'ble kokt wvannet bort'
['TVsmallclAdvP.Pass'

base ++ 'Caus' ++ 'TV_smallcl AdvP'

"Per koker bort vannet'

['TVsmallclAdvP_PredicMvt'

base ++ 'Caus' ++ 'TV_smallcl AdvP'

'"PredicMvt' (_ 142, 143)],

"ble kokt bort wvannet'

['TVsmallclAdvP_PredicMvt_Pass'

base ++ 'Caus' ++ 'TV smallcl _AdvP'
'Predicht'g*280 _281}

'Per bortkoker vannet'

++ 'Pass']),

['TVsmallclAdvP IncorpAdv'

base ++ 'Caus' ++ 'TV_smallcl AdvP'

'Incorp_Adv' (_412, 413]],

'ble bortkokt vannet'

['TVsmallclAdvP_IncorpAdv_Pass'

base ++ 'Caus' ++ 'TV_smallcl AdvP'
'Incorp_Adv'{ 547, 548) ++ 'Pass']),

'Per koker kluten ren'

['"TVsmallclAP' : base ++

'ble kokt kluten ren'’
['TVsmallclAP Pass'

base ++ 'Caus' ++ 'TV_sm21llcl AP'

b Sy

'Pass']),

'Caus' ++ 'TV_smallcl AP'],

++

'Pass']),

_3997) ++ 'Pass'],

1,

0) ++ 'Pass'],

4534)],

_4755) ++

'Pass'],

'DO refl'],

'Pass'],

'DO_refl'],

'Adv_to DO'],

'TV_smallcl_ AdvP'),

Page 3

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences

'Per koker ren kluten'
['TVsmallclAP_PredicMvt!'
base ++ 'Caus' ++ 'TV_smallcl AP' ++
'"PredicMvt' (_717,_718)],
'ble kokt ren kluten'
('TVsmallclAP_PredicMvt Pass'
base ++ 'Caus' ++ 'TV_smallcl AP' ++
'PredicMvt’ (855, 856) ++ 'Pass'],
'"Per renkoker kluten'
['TVsmallclAP_ZIncorph'

base ++ 'Caus' ++ 'TV_smallcl_AP' ++ 'Incorp A'(_ 982, 983)],

'ble renkokt kluten' :
['TvsmallclAP_IncorpA_Pass'
base ++ 'Caus' ++.'TV_smallcl AP' ++
'Pass'], B
'Per koker potetene til gr\277t'

'"Incorp_A'(_1106, 1107) ++

['TVsmallclPP' : base ++ 'Caus' ++ 'TV_smallcl PP'],

'ble kokt potetene til gr\277t'
('TVsmallclPP_Pass'

base ++ 'Caus' ++ 'TV_smallcl PP' ++ 'Pass'],

'Per koker kjelen inn'
["IVsmallclAdvp'

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AdvP'],

'ble kokt kjelen inn'
['IVsmallclAdvP_Pass'

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AdvP'

'Per koker inn kjelen’
['IVsmallclAdvP PredicMvt'

base ++ 'Caus’ ++ 'DO_del' ++ 'IV_smallcl Advp'

'PredicMvt' (1316, 1317)],
'ble kokt inn kjelen'
('IVsmallclAdvP PredicMvt Pass!

base ++ 'Caus’ ++ 'DO_del' ++ 'IV_smallcl AdvP'

'PredicMvt’' (_1458, 1459) ++ 'Pass'],
'innkoke kijelen’
['IVsmallclAdvP_IncorpAdv'’

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl Advp'

"Incorp_Adv'(1594, 1595)1],
! ble innkokt kjelen'
[‘IVsmallclAvahIncorpAdv Pass'

++ 'Pass'],

base ++ 'Caus’ ++ 'DO_del' ++ 'IV_smallcl AdvP' +4+
"Incorp Adv'(_1732, 1733) ++ 'Pass'],

'"Per koker kjelen svart'

['IVsmallclAP' ": base ++ 'Caus' ++ 'DO_del' ++ "IV_smallcl_AP'],

'ble kokt kjelen svart'
['IVsmallclAP_Pass'

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP' ++

'Per koker svart kjelen' :
('IVsmallclAP PredicMvt'

base ++ 'Caus' ++ 'DO del' ++ 'IV_smallcl AP' ++

'PredicMvt’' (_1913, 1914)],
'ble kokt svart kjelén’
('IVsmallclAP PredicMvt Pass'

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP' ++

'PredicMvt' (_2054, 2055) ++ 'Pass'],
"'svartkoke xjelen'
['IVsmallclAP_IncorpA'

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP' ++

'Incorp A'(_2184, 2185)],
'ble svartkokt kjelen!
("IVsmallclAP_IncorpA_Pass'

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP' ++

'Incorp_A'(_2312, 2313) ++ 'pPass’'],
'Per koker seg trett' :
('IVsmallclAP DOrefl’

base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP' ++

'Per koker hull i1 taket'

'Pass'],

'DO_refl'],

['IVsmallclPP' : base ++ 'Caus' ++ 'DO_del' ++ 'IVhsmallCl_PP'],

Page 4

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences Page 5

'ble kokt hull i taket'
["IVsmallclPP Pass'
base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl PP' ++ 'Pass'],
'Per koker seg i godt hum\277r!'
['IVsmallclPP_DOrefl!'
base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl PP' ++ 'DO_refl'],
'Vannet koker bort!
('TVsmallclAdvP_Promtoea'
base ++ 'TV_smallcl AdvP' ++ 'Prom_to ea'],
'Vannet er bortkokt!
['TVsmallclAdvP_IncorpAdv_Promtoea'
base ++ 'TV_smallcl AdvP' ++ '"Incorp_Adv' (_2555, 2556) ++
'Prom_to _ea'],
'Potetene koker m\277re!
['TVsmallclAP_Promtoea' : base ++ 'TV_smallcl AP' ++ 'Prom_to ea'],
‘Potetene m\277rkoker’
('TVsmallclAP_IncorA Promtoea' : ’
base ++ 'TV_smallcl AP' ++ '"Incorp A'(_2697, 2698) ++
'"Prom_to_ea'],
'Potetene koker til gr\277t'

['TVsmallclPP_Promtoea' : base ++ 'TV_smallcl PP' ++ 'Prom_to _ea'],
'"han reiser seg' :
['Caus_DOrefl' : base ++ 'Caus' ++ 'DO refl'],
'et t\214rn reiser seg’
['Exgrefl Promtoea' : base ++ 'Erg refl' ++ '"Prom_to_ea'],
'det reiser seg et t\2l4rn'
['Ergrefl detins' : base ++ 'Erg refl' ++ det ins))).
xtemplate (3,exp_iv,
['Jon fryser' : [basic : base], :
'Jon fryser til d\277de' : ['SuPredAdPP' : base ++ 'SuPredAd PP']]).
Xtemplate (4, tv,
[basic : [basic : base],
'blir spist maten' : ['Pass' : base ++ 'Pass'],
"Per kj\277per henne en hatt'
['FreeIOins' : base ++ 'Free IO ins'],
'Per kij\277per seg en hatt! '
['IOrefl' : base ++ 'Free_IO_ins' ++ 'IO refl'],
'ble kj\277pt henne en hatt'
['FreeIOins Pass' : base ++ 'Free_IO_ins' ++ 'Pass'],
'Per vasker seg' : ['DOrefl' : base ++ 'DO_refl'],
'Per spiser maten opp’
['TVsmallclAdvP' : base ++ 'TV_smallcl AdvP'],
'blir kastet fangen ut!
['TVsmallclAdvP_Pass' : base ++ '"TV_smallcl AdvP' ++ 'Pass'],
'Per kaster seqg ut' ;
['TVsmallclAdvP_DOrefl' : base ++ 'TV_smallcl_AdvP' ++ 'DO_refl'],

'Per spiser opp maten'
['TVsmallclAdvP_PredicMvt'
base ++ 'TV_smallcl AdvP' ++ 'PredicMvt’' (_186, 187)],
'blir spist opp maten!
['TVsmallclAva_Predicht_Pass‘
base ++ 'TV_smallcl AdvP' ++ ‘PredicMvt’ (_320, 321) ++ 'pass'],
'oppspise maten'
['TVsmallclAdvP_IncorpAdv'
base ++ 'TV_smallcl AdvP' ++ ‘Incorp Adv'(_ 449, 450)],
'ble oppspist maten!'
['TVsmallclAdvP_IncorpAdv_Pass'
base ++ 'TV_smallcl AdvP' ++ "Incorp Adv'(_580, 581) ++ 'Pass'],

'Per vasker huset rent’ : ['TVsmallclAPT : base ++ 'TV_smallcl AP'],
'blir vasket huset rent'

['TVsmallclAP_Pass' : base ++ 'TV_smallcl AP' ++ 'Pass'],
'Per vasker seg ren'

('TVsmallclAP DOrefl' : base ++ 'TV_smallcl AP' ++ 'BO. refl’],

'Per vasker ren huset'
['TVsmallclAP_ PredicMvt'
base ++ 'TV_smallcl AP' ++ 'PredicMvt' (_757,_758)],

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences

'blir renspist tallerkenen'
['IVsmallclAP_IncorpA Pass'
base ++ 'DO del' ++ 'IV smallcl AP' ++
'Incorp A'(_2832, 2833) ++ 'Pass'],
'han spiser seg mett'
['IVsmallclAP_DOrefl'
base ++ 'DO_del' ++ 'IV_smallcl AP' ++ 'DO_refl'),
'Per drikker Jon under bordet'
['IVsmallclPP' : base ++ 'DO_del' ++ 'IV smallcl PP'],
'blir drukket Jon under bordet' -
['IVvsmallclPP_Pass' :
base ++ 'Do del' ++ 'IV smallcl _PP' ++ 'Pass’'],
'han spiser seg i godt hum\2??r'
['IVsmallclPP DOrefl'
base ++ 'DO del' ++ 'IV smallcl PP' ++ 'DO refl'],
'"Per spiser p\214 br\277det’ -

('DOtoPP' : base ++ 'DO_to PP'(3008)],
'blir spist p\214 br\277det™
['DOtoPP_Pass' : base ++ 'DO_to_PP'(3079) ++ 'Pass'],

'Per drikker kaffen varm'
['ObjQual' : base ++ 'ObjQual’(3160)],
'blir drukket kaffen varm'

['ObjQual_Pass' : base ++ 'ObjQual'{(_3258) ++ 'Pass'),
'Per sier noe til Jon’

L'FPad' : base ++ ‘PP ad'|{ 3360, 3361)],
'ble sagt noe til Jon' : -

('PPad_Pass' : base ++ 'PP_ad'(_3474, 3475) ++ 'Pass'],

'Per sier noe til Jon fra M'
('PPad_PPad' : :
base ++ 'PP_ad'(_3684, 3685) ++ 'PP_ad' (_3584, 3585)],
'tilskrive Jon et brev' -
['PPad_IncorpP'
base ++ 'PP_ad'(_3901,_3902) ++ 'Incorp P'(3798, 3799)],
'ble tilskrevet Per el brev!' -
('PPad_IncorpP_Pass'
base ++ 'PP_ad'(_4121, 4122) ++ "Incorp_P'(_ 4018, 4019) ++
'pPass'], . -
'Per fyller b\277tta med vann'
['PPad_loadalt!
base ++ 'PP_ad'(_4465, 4466) ++ load alt],
'ble fylt b\277tta med vann' -
('PPad_loadalt Pass' :
base ++ 'PP_ad'(_4582, 4583) ++ load_alt ++ 'Pass'],
'Per fyller seg med Whisky'
['PPad _loadalt DOrefl'
base ++ 'PP _ad' (4699, _4700) ++ load_alt ++ 'DO refl'],
'kaste Jon n\277tteT i hodet ' -
['PartWhtoIO® '
base ++ 'PP_ad'(_4813, 4814) ++ 'Part_Wh to 10'},
'ble kastet Jon n\277tter i hodet' :
['PartWhtoIO_Pass' :
base ++ 'PP_ad'(4930, 4931) ++ 'Part_Wh_to_IO' ++ 'Pass'],
'kaste seg n\277tter i hodet'
['PartWwhtoIO_IOrefl' .
base ++ 'PP_ad'(5047, 5048) ++ 'Part_Wh_to_ IO' ++ 'IO refl']},
'kaste seg Jon rundt halsen‘ -
['PartWhtoIO DOrefl!'
base ++ 'PP _ad' (5164, 5165) ++ 'Part_Wh_to IO' ++ 'DO refl'],

'Per s\214 en elg komme' : ['AcI' : base ++ 'ACI'],
'ble sett en elg komme'
["AcI_Pass' : base ++ 'AcI' ++ 'Pass'],
'Per s\214 seg gli' :
("AcI_DOrefl' : base ++ 'AcI' ++ 'DO refl'],
‘Per sa ats' : (atS :; base ++ atS(_5333)),

"Per sa Marit atS'
(atS_FreelOins : base ++ atS(_5467) ++ 'Free I0 ins'],
'ble sagt Marit atS’ -7
(atS_FreelOins_Pass

Page 7

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences Page 8

base ++ atS(_5604) ++ 'Free_IO _ins' ++ 'Pass'],
'ble sagt ats'
(atS_Pass : base ++ atS(_5737) ++ 'Pass'],
'"Per sa atS til Jon!
[atS_PPad :
base ++ atS(_5967) ++ 'PP_ad'(5855, 5856)],
'ble sagt atsS til Jon!
[atS_PPad Pass
base ++ atS(_6201) ++ 'PP_ad'(_6089, 6090) ++ 'Pass'],
‘Per sa hvS' - [hvS : base ++ hvS(_6335)],
'"Per sa Marit hvS!
[hvS_FreeIOins : base ++ hvS(_6482) ++ 'Free IO ins'],
'ble sagt Marit hvs'
(hvS_FreelIOins_Pass,:
base ++ hvS(_6633) ++ 'Free IO ins' ++ 'Pass’'],
'ble sagt hvs!
[hvS_Pass : base ++ hvS(_6781) ++ 'Pass'],
'Per sa hvS til Jon'
(hvS_PPad
base ++ hvS(_7025) ++ 'PP_ad'(_6909, 6910)),
'ble sagt hvs til Jon'
[hvS PPad Pass
base ++ hvS(_7272) ++ 'PP_ad'(_7156, 7157) ++ 'Pass'],
'Per pr\277vde \214inf' : [o_inf : base ++ o_inf],
'ble pr\277vd \214inf’
[o_inf_ Pass : base ++ o_inf ++ 'Pass']]).
xtemplate (5,th_tv,
['papiret absorberer vannet' : [basic : base],
'blir absorbert vannet' : ['Pass' : base ++ 'Pass']])).

xtemplate (6, exp_tv,

['Per liker kaffe' : [basic : base],
'Per liker kaffen varm' :
['Depict!' : base ++ 'Depict'(_46)])).
xtemplate (7,ditv,
['Per gir Jon penger' : [basic : base],
'ble gitt Jon penger' : ['Pass' : base ++ 'Pass'],
'Per gir penger' : ['I0del' : base ++ YT0 delv],
'ble gitt penger!'
['IOdel_Pass' : base ++ 'IO del' ++ 'Pass'],

'Per gir penger til de fattige'
['IOdel_PPad’
base ++ 'I0_del' ++ 'PP_ad'(_98, 99)],
'ble gitt penger til Jon'
['I0del PPad Pass'
base ++ 'I0_del' ++ 'PP_ad'(_215, 216) ++ 'Pass'],
'Per gir seg'
['IOdel _DOrefl' : base ++ 'IO_del' ++ 'DO_refl'),
'han gir' : ['IOdel_DOdel' : base ++ 'IO del' ++ 'DO_del'],
'blir gitt penger!
['IOdel_DOdel Pass' :
base ++ 'IO del' ++ 'DO_del' ++ 'Pass'],
'Per gir til de fattige'’
['IOdel DOdel PPad'
base ++ 'IO_del' ++ 'DO_del' ++ 'PP_ad'(_383, 384)],
'‘Per gir boksen full'
['IVsmallclAP' : base ++ 'IO_del' ++ 'DO_del' ++ 'IV smallcl AP'],
'ble gitt boksen full' : - -
[*'IVsmallclAP Pass'
base ++ 'IO_del’ ++ 'DO_del' ++ 'IV_smallcl AP' ++ 'Pass’'],
'Per gir familien ut av huset!
('IVsmallclPP' : base ++ 'IO del' ++ 'DO_del' ++ 'IV smallcl PP'),
'ble gitt familien ut av huset' - -
["IVsmallclPP Pass'
base ++ 'I0O_del' ++ 'DO_del' ++ 'IV_smallcl PP' ++ 'Pass'),
'"Per gir opp'

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences

['IOdel DOdel SuPredAdadvp'
base ++ 'I0O_del' ++ 'DO_del' ++ 'SuPredAd AdvP'],
'Per gir Jon et slag i hodet' :
['PartWhtoIO' : base ++ 'IO_del' ++ 'Part_Wh_to IO'],
'ble gitt Jon et slag i hodet'
["PartWhtoIO Pass'
base ++ 'I0 _del' ++ 'Part_Wh to IO' ++ 'Pass'],
'"Per gir pengene bort!’
['TVsmallclAdvP' : base ++ 'IO del' ++ 'TV_smallcl AdvP'],
'ble gitt penger bort'
['TVsmallclAdvP Pass’
base ++ 'I0 _del' ++ 'TV_smallcl AdvP' ++ 'Pass'],
'Per gir bort penger' '
['TVsmallclAdvP_PredicMvt'
base ++ 'IO_del' ++ 'TV_smallcl AdvP' ++
'"PredicMvt' (_694, 695)],
'ble gitt bort penger'
('TVsmallclAdvP_PredicMvt Pass' :
base ++ 'IO_del' ++ 'TV_smallcl AdvP' ++
'PredicMvt' (832, 833) ++ 'Pass'],
'"Per bortgir penger'
[('TVsmallclAdvP_IncorpAdv'
base ++ 'IO_del' ++ 'TV_smallcl AdvP' ++
'Incorp_Adv'({ 965, 966)],
'ble bortgitt penger!'
['TVsmallclAdvP_IncorpAdv_Pass'
base ++ 'IO_del' ++ 'TV_smallcl AdvP' ++
'"Incorp_Adv'(_1099, 1100) ++ 'Pass'],
'"Per gir penger ut av landet'
('TVsmallclPP' : base ++ 'IO_del' ++ 'TV_smallcl_PP'],
'ble gitt gull ut av landet'
['TVsmallclPP_Pass'
base ++ 'IO_del' ++ 'TV_smallcl PP' ++ 'Pass'],

'Per gir seg god tid' : ['IOrefl’ : base ++ 'IO refl']]).
xtemplate (8, refl,
('Per skammer seg' : [basic : base],
'Per skammer seg over bilen sin' : g
('PPad' : base ++ 'PP_ad'(_54, 55)]]).
xtemplate (9, psych,
['irriterer Per vinden' : [basic : base],
‘Vinden irriterer Per' : ['Promtoea' : base ++ 'Prom to ea'],
'irriteres Per av vinden' : ['Pass' : base ++ 'Pass'],
'"Per irriterer seg' :
['DOdel ExpMvt' : bdse ++ 'DO_del' ++ 'ExpMvt'],
'Per irriterer seg over vinden'
('ExpMvt_DOtoPP' : base ++ 'ExpMvt' ++ 'DO_to PP'(77)],
'Jon irriterer Per med snakk'
['DOtoPP_Caus' : base ++ 'DO_to PP'(_151) ++ 'Caus'],
'Jon irriterer Per'
['DOdel_Caus' : base ++ 'DO_del' ++ 'Caus'],
‘irriteres Per av Jon'
['DOdel_Caus_Pass' : base ++ 'DO_del' ++ 'Caus' ++ 'Pass'),
'Vinden irriterer’
['Expdel Promtoea' : base ++ 'Exp_del' ++ 'Prom to ea'],
'irriterer Per atS' : [atS : base ++ atS(3%83)],

'atS irriterer Per'

[atS_Antiexp : base ++ atS(_526) ++ 'Anti_exp'],
'Per irriterer seg over ats'

[atS_ExpMvt DOtoPP

base ++ atS(_663) ++ 'ExpMvt' ++ 'DO_to PP'],
"fryktes ats’

(atS_Pass : base ++ atS(_797) ++ 'Pass'],
‘interesserer Per hvS' : [hvS : base ++ hvS(_ 931)]),
'hvS interesserer Per!

(hvS_Antiexp : base ++ hvS(_1078) ++ 'Anti exp'],
'"Per interesserte seg for hvsS' ;

Page

G

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences Page

(hvS ExpMvt DOtoPP
base ++ hvS(_1229) ++ 'ExpMvt' ++ 'DO_to_PP'],
'fryktes hvs'

[(hvS_Pass : base ++ hvS(_1377) ++ 'Pass'],
‘irriterer Per \214inf' : [o_inf : base ++ o_inf],
'\214inf irriterer Per' B

[o_inf Antiexp : base ++ o_inf ++ 'Anti_exp'],
'Per irriterer seg over \214inf'

[o_inf_ ExpMvt DOtoPP

base ++ o_inf ++ 'ExpMvt' ++ 'DO to PP'],
'mislikes \214inf' : [o_inf Pass : base ++ o_inf ++ 'Pass']]).

xtemplate (10, raisvl,
('viser seg at Jon er kompetent' : [basic : base],
'det viser seqg at Jon er syk' : [detins : base ++ det_ins],
'Jon viser seg \214 v\276re syk!'
[atStoClinf SubjRais
base ++ atS_to Cl_inf(_227) ++ 'SubjRais' (_85)],
"Jon viser seg syk'
(atStoClinf_SubjRais_o_inftopredicAP :
base ++ atS_to _Cl_inf(_526) ++ 'SubjRais'(384) ++
o_inf_to_predic_AP]]).

xtemplate(1ll,raisv?2,

['virker som om Per er syk' : [basic : base],

'det virker som om Per er syk' : [detins : base ++ det ins],

'Per yirker som om han er syk' -
['RaisCop' : base ++ 'RaisCop'],

'Per virker syk' :
['PropcompltoSC_SubjRais'!
base ++ 'Prop compl_to_ SC'(242) ++ 'SubjRais'{(99)]])).

xtemplate (12, raisv3,

['synes meg at Per er syk' : [basic : base],

'det synes meg at Per er syk' : [(detins : base ++ det ins],

'det synes at Per er syk' : -
['I0del_detins' : base ++ 'IO_del' ++ det ins],

'det synes meg som om Per er syk' : '
[atStopropcompl detins
base ++ atS_to_prop_compl ++ det ins],
'det synes som om Per er syk' :
['ICdel atStopropcompl detins'
base ++ 'IO del' ++ atS$ _to_prop_compl ++ det_ins],
'Per synes meg som om han er syk' :
[atStopropcompl RaisCop
base ++ atS_to_prop compl ++ 'RaisCop'],
'Per synes som om han er syk' :
['IOdel_atStopropcompl RaisCop'
base ++ 'IO_del' ++ atS_to_prop compl ++ 'RaisCop'],
'Per synes meg "\214 v\276re syk!
[atStoClinf_ SubjRais
base ++ atS5_to_Cl_inf(_319) ++ 'SubjRais'(177)],
'Per synes \214 v\276re syk' -
('I0del_atStoClinf SubjRais'
base ++ 'IO_del' ++ atS_to_Cl_inf (_615) ++
'SubjRais'(_473)]),
'Per synes meg syk' :
[atStoClinf SubjRais o_inftopredicAP
base ++ atS to Cl inf(917) ++ 'SubjRais'(775) ++
o_inf_to_predic_AP), -
'Per synes syk' :
['IOdel atStoClinf_ SubjRais_o_inftopredichAp!
base ++ 'I0 del' ++ atS to Cl inf(1216) ++
"SubjRais'(1074) ++ 0_1nf_t0_p1edlcmAP]]}

~template (13, raisvd,
['late til at Per er syk' : [basic : base],
'det later til at Per er syk' : [detins : base ++ det ins],

10

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences

'Per later til \214 v\276re syk'
[atStoCLinf SubjRais
base ++ atsS_to_Cl_inf(_227) ++ 'SubjRais'(_85)])).

xtemplate (14, depict,
['forestille seg Per' : [basic : base],
'Jon forestiller seg at Per er frisk'
(atS : base ++ atS(_66)],
'"Jon forestiller seg Per frisk' :
[atStoSC : base ++ ats(_199) ++ atS_to_SC]]).

xtemplate (15, smallcl,
['man anser Jon for \214inf' : [basic : base],

'blir ansett Jon for: \214inf' : ['Pass' : base ++ 'Pass'],

'man anser Jon som skyldig'

[(foro_inftopredicsom : base ++ for_oinf to_predic_som],

'blir ansett Jon som skyldig!'

(foro_inftopredicsom Pass
base ++ for_oinf_to_predic som ++ 'Pass']]).

xtemplate (16,1iv_loc,
['Per bor i byen' : [(basic : base]
'ble bodd i byen': ([[('Pass': base ++ Pass'])).

xtemplate (17, refl loc,

['Per oppholder seg her' : [basic : base]])).
xtemplate(lB,tv_loé,

['Per setter vasen p\214 bordet' : [basic : basel,

'blir satt vasen p\214 bordet' : ['Pass' : base ++ 'Pass']]).
xtemplate (19, ind_arg,

['Jon stoler p\214 Per' : [basic : base],

'blir stolt p\214 Per' : ['Pass' : base ++ 'Pass'],

'Per lurer p\214 omS' : ([omS : base ++ omS(84)]]).

xtemplate (20, ind_arg_refl,
['Per forvisser seg om' : [basic : base]]).

xtemplate (21,weather,

['sn\277r' : [basic : base],
‘det sn\277r' : [detins : base ++ det ins],
'det regner store dr\21l4per’'
('InhObj_detins' : base ++ 'InhObj' ++ det ins]]).

xtemplate (22, measure,
['steinen veler 3 kg' : [basic : base]]).

Xtemplate (23, repr,
['bildet forestiller Per' : [basic : base]]).

Xtemplate (24, appellatl,

['Jon utnevner Per til sjef' : [basic : base],
'blir utnevnt Per til sjef' : ['Pass' : base ++ 'Pass'],
'Per utnevner seg til sjef' : ['DOrefl' : base ++ 'DO_refl']]).
xtemplate (25, appellat?2,
['Per kaller Jon et geni' : (basic : base],
'blir kalt Jon et geni' : ['Pass' : base ++ 'Pass'],
'Per kaller seg et geni' : ['DO refl' : base ++ 'DO ¥efl "y,
'Per kaller Jon for et geni' -
('PP' : base ++ 'PP'(_105)],
'blir kalt Jon for et geni!'
('PP_Pass' : base ++ 'PP'(280) ++ 'Pass'],
'Per kaller seg for et geni'
['PP DO refl' : base ++ '"PP'{_456) ++ 'DO_refl']]),

wtemplate (26, refl manner,

Page

11

03-10-1989 10:01 HD 40 IIcx:Derivation:Intralex-D-sequences Page 12

e

['Per oppf\277rer seg bra' : [basic : base]]).

xtemplate (27, erg_ditv,
['venter jon en ulykke' : [basic : base],
'det venter jon en ulykke' : [detins : base ++ det ins],
'en ulykke venter jon' : ('Promtoea' : base ++ 'Prom_to ea']])).

‘[,1zA3TTRTIUSIO4, ++ 8SBQ : ,TZAITIRTIUS2O4,]

IequuoIq,
‘[,0TA3TTEND, ++ (0ZAITTITQTSSO4, ++ (SNBD, ++ 9seq :,0TA3TTENnD 0ZAITITGISSOd,]
D39y Ieqyoy,
‘[,0zA3TITqTSSOd, ++ ,SNBD, ++ 9SeBQ : ,0CA3ITITQTSSOd,]
P IBgAOY,
‘[9seq : OTS®BQ] : ,3}BUUBA IO,]

‘bxa ‘z) ajetdwaix

*(([.,€3T0S24, ++ 9Seq :,£3Tnsay,]:,proqie,
‘[,pTIDUUBK, ++ 9SBQ :,pTISUUEH,]

:,butdeTt,

4[,ISs9o001d, ++ 9Seq :,ISS2001d,]

: :,butdeT,
‘[,L3uaby, ++ 9seq :,L3uaby]

; :,I9pTaqae,
‘[,93uaby, ++ °9seq :,93uaby,

:,I10deT,

/[,63usad, ++ ©seq :,g3juand,]

:,deT1,

‘[,F3uUdaZ, ++ 9seq :,p3uaad,]

:,deT,

‘[,1Ss9001d, ++ 9SeBQq :,[SS90014,]
_ : ,8SToAI3PA],
‘[,TISS9001d, ++,8Z3ATe o4, ++ 9seq_ :1SS9001d 8Z3Teed,] 1 butuliysaq,
‘[,8Z3T® 99, ++ ¥SeqQ :,8Z73TRAq,]:,934%saq,
kH_OHmuﬂﬁmso_ ++ ,pzhazedoxgdAl, ++ oseq :QTA3TTEND pzAixadoxadAil,)
: ,3oywosiexd,
‘[,pzA3zedoxgdiL, ++ 9seq : ,pzAzzadoxgdil,)
: ,wosjead,
- _ [;0TA3TTEND, ++
(9ZB3N, ++ (0ZAITTTATSSOd, ++ ;00 O3 APY, ++ 8seq : QTAITTRND 9ZHoN 0ZAITTTATSSOd OQOIAPY,]
L : ,39yxeqgbuebn,
‘[19ZbaN. ++,0ZA3TTITATSSOd, ++ ,00 O3 APV, ++ 9SBQ : ,9ZBON 0ZA3ITITATSSOd 0OQOIAPY,]
3 : ,Teqbuebn,
. _ _ ‘[(,quod, ‘0T38Y) ,0TA3ITTRRD,: ++
102A3TTTATSSOd: ++ ,0Q O3 APY, ++ 2SBQ : QTAITTEND QZAITITATSSOd OQOIAPY,]

. t ,39yxeqgbueb,
“[,02A3TTTqTSSOd, ++ ,0Q O3 APY, ++ 9Seq : ,0ZA3ITITQTISSOd OQOIAPY,)
: ,Teqbueb,
‘[.0zZA3TTTQTSSod, ++ ,[QOYuI, ++ @seq : ,0zZA3ITTTqTSsod (QOYUI,]
1, Ieqalys,
: ‘[eseq : o1seq] : ,I93AYSs 13d,]
\ ' ‘AT ’T)o3e1dualx
1 sbeg meCmDHuwwlmmZQ”Go.wumb..nan“xUHH 0y QH BEQT 686T-80-6T

229

"([[,LZ230A3TTRIOL, ++ 9SBQ :,LZFOA3TTEIOL,] :,WOPI T,
" ‘[(STAL., ++ 9SBQ :,5Td4l.] :,burir®3IOF,
‘[£TF0A3TTRIOL, ++ ®SBQ :,£T30A3TTRIOL,]:,de}s1333e3103,
‘[,93uaby, ++ 9seq :,93UdbY,] :,I19330FI0T,
‘[,ISseo001d, ++ 9SeQ :,[SS9001d.]
: ,butbbAiq,
‘[,1SS9001d, ++ 13T® °Qq ++,PE dd,++ 9SeQ :1SS9001d 3TRSq pPedd,,]:,9sTabbAqaq,
‘[,£3TNsS9aYd, ++ 3IT® oq ++ ,P® dd, ++ 9SBq : ,£3[NS3Y 3Tedq Pedd.]
1 ,9s19bbAgeq,
‘[.823T® 29, ++ 9seq :,3Te3q,] :,3bbAqaq,
. ‘[,£3T0SdY, ++ 9Seq : ,£3TNSI]
: ,butubdiq,
‘l.0TA3TTeNd, ++ ,9ZBON, ++ ,0ZAITTTATSSOd, ++ 9seq : ,0TA3ITTRND 9ZDBON 0zA3TTTATSSO4,]
_* i39yaeqsaIn,
‘[i9ZbeN: ++,0ZA3TTTqTSsod, ++ @seq : ,9zbeN 0zA3TTTIqTsSsod.]
:,Ieqgsatn,
‘[,0TA3TTEBND, ++ ,0ZA3ITTITATSSOd, ++ °seq :,0TA3TTIenD 0ZA3TTTATSSOd,]
! ,39YIRgSaT,
‘[,0ZA3TTTqTSSOd, ++ ¥seq : ,0ZA3ITITQISSO4,]
i ,IeqgsaT,
e i .b.ﬁh#ﬂ._”mm.o 1 T
«9ZDeN, ++,0Z43TTTATSS0d, ++ @seq : QTA3ITTEn] (92)bBaN 0zA3TTIqTSSod,]
:,39uybtrestdsn,
‘1.9269N, ++ ,0ZA3ITTTATSSOd, ++ °SBq :,(9Z)DoN 0zA3TTTIqTSSO4,)

:,brrostdsn,

“[(0TA3TTERD, ++ ,0ZA3ITTTATSSOd, ++ 9SBQ :,QTA3ITTBND 0ZA3ITITAISSOd,)
: ,38ybrrestds,

‘[,0ZA3TTTqTSS0d, ++ ®seq : (ZA3ITTTQISSod])

. brrestds;

‘[sseq : o1seq] : OoFseq]
‘A3 'p)o3erduanx

*([l.€31Tns®d, ++ @seq :,g3Tnsay,]: ,butusiaz,
‘[eseq : oTseq]:,19skxz uop,]
‘AT dxa‘g)ezerdwalx

"([[:L3usby, ++ ,SUBD, ++ °seq :,.3uaby,]: X0,
‘[,Zssed01g, ++ °8seq :,zsSsa001d,]

:,uuexq,
[(Isse00x14, ++ @sSeq :,Tsso201d,]

" : butyoy,

“[.0TA3TTEND, ++ ,A3TTRBTIUL304, ++ 9seq :,0TA3TTend 1zA3TTRTIUS304,)
I 38yaequuaIq;

Z obeg S30UaNbIS-YNJ:UOTIRATISA:XOII 0b QH 8€:0T 686T-80-6T

i . br1asbis,

‘[,2ZA3TTRTIIUS204, ++ .23 03 WOId, ++ ©Se2q :,ZZA3ITIRTIUS}04 BIOJWOId,)
b1TI0bI9,

‘[dd 03 0Q, ++ ,6zCpvdxd, ++ 9SBq :,dd030d 6z(pvdxd,]:,19A0 3ISITIIT,
‘[,6zlpvdxd, ++ ,T9P 0Q, ++ oseq:,6zlpydxd,]:,319371T,

‘[,guoTioud, ++ ,dd O3 04, ++ 3IAWAXT, ++ 9SBQ :,8UOTIOWT dd030Q 3IAWAXT,]

:,uolseayaxT,

‘[£ZA3TTRTIULI04. ++ ,38WdXE, ++ 9seq :,gzhirreriueiod 3AWdx3,]

& P, T99RITIT,
; ‘[eseq : DTSBQ] : ,USPUTA I3d IDIVITIIT,)

‘yohsd’g) @szetdwalx

"([[zzA3TTRT3U®304, ++,PB dd, ++ °@seq :,zzA3TTeT3us3od,)

: . br1oureys,

‘[sguoTiowd,, ++ 9SeBQ :,gUOTIOWT,]
D, weys,

‘leseq : oTseq] : ,bss zsumeys x94,]
‘1391‘g) o3eTdwalx

“([[.€3TNS9Y, ++ °seq :,£3INSdY,)

: ,9aeb,

~ ‘[eseq : o1seq] : ,xsbusd uop 11tH 134,]
‘A3TP ‘L) @3eTdwalx

1, IEYS LTuoT3owd,] :,Xs3ey,

“([[.LTUOTIOWT, ++ dSeq :,,TuoT3owd,]:,3eY,
‘[aseq : OoTSEq] : ,YYTISnu I23eRYy I3d,]
‘A3 dxe‘9)ajerdwanx

- “([[,TSSs®00x1d, ++ 9Seq :,TSso201d,]
. ._mcHHwQHOmnm_

‘(. 0TA3ITTEND, ++ ,9¢BoN. ++ ,TZA3ITTRTIU9304, ++ 9SBQ :,0TAITTEND 9zboN TZAITTRTIUS3OL,]
:,19yIeqIagIosqeuT,

‘[.0TA3TTRND, ++ Hmmpﬂﬁmﬂucwuom. ++ 9seq :,QTA3TTend TzA3TTRTIIUD304,]

! 3syIRqIAqIOSgR,

‘[+92baN, ++ ,TzA3TTRTIUS304, ++ 3seq :,9zbeN TzA3atTeTaU9304,])

: IRgqIogIosqeuTr,

‘[+TZA3TTRTIUS304, ++ 9SBQ : ,TZAITTETIIUS3OJ,]

) I ,IeqgIagIosqe,

\ ‘[oseq : oT1SER(Q] : ,33uUUBA Iarxaqiosqe 391Tded,)

‘A3 y3z‘g)ezerduaix

£ abeg mmucuszm|m2Q”coﬂuMbﬂuwo“xUHH 0¥ QH 8E€:0T 686T-80-6T1

v abeg

S90USNbIS-YNQ: UOTIBATISA:KOIT OF QY

"([[spTI9UURK, ++ 9Seq ! ;pFIId2UUEK,]

. !, Tosagzyddo,
*([[eseq : o1seq] : ,exq bes zaxy . z\3ddo z24g,]
‘Isuuew TI31‘9z)ojerdwsyx

*([[.Tss900xg, ++ °3eq :,TSS82014d,]

: ,pToyddo,

‘[eseq : 2Tseq] : a8y bas zsptoyddo 134,)
‘00T TF9x’.T1)o3erdwalx

"([(.€3TNS9Y, ++ 3IT® °q ++ °9Seq :£3Tnsay 3ITe3q,)

:,9sT900gaq,
‘[102A3TTTATSS0d, ++ 3T® q ++ 9seq :,,0zA3TTIqQISSOd 3Teaq,]
_ _) :,br190q0q,

‘l[.8231® @q, ++ sseq :,gz3tesq,]:,o0qaq,

‘[eseq : otseq] : yUBAq T 10q 134,]

. 207 AT’971)o3etdwslx

“([l.620pydxa, ++ ,3aRdXT, ++ oseq:,6zClpvdxg 3andxa,]

8E€:0T 686T-80-6T

App-

1.6.89

I. The derivational rules.

For each process, we first provide an informal, theory neutral description, then a* -
semi-formal description in the chosen GB-associated terms, then the way in which
the rule will be entered in a template menu, then an example of sentences or
expressions acccf)tcd by the input and output templates, and finally whatever
comments are in order. In the semi-formal statement, we include only as much
detail as is necessary. Italicized expressions are used as placeholdérs for lambda-
bound variables, indicating what type of item will occur there.

DO(direct object)-deletion:
Informal description:
Remove direct object from the frame, replacing it with an implicit argument. A

semantic effect 1s that Aspect, whenever resultative in the input, changes to
durative.

Semiformal description:

In SAF, replace <X,np,gov> with <X rp,implarg>.

In SemProp->Aspect, replace 'resultative’ with 'durative’. Condition: there is no
<X,np,io>. '

. Rule statement: DO_del

[Ex. spise fisken -> spise]

Object-to-PP:

Informal description:

Remove direct object from the frame, replacing it with a PP. A semantic effect is
that Aspect, whenever resultative in the input, changes to durative.

Semiformal description:

In SAF, replace <x,np,gov' with <X,np,pgov/prep>. Condition: there is no
<X,np,io>.

In SemProp->Aspect, replace 'resultative’ with 'durative’,

[Ex. spise brgdet -> spisc pa brgdet]

Rule statement: DO_to_PP(arg)
where arg is either a preposition or the default 'pgov'

[0-deletion:

Informal description:

Remove 10 from the frame, replacing it with an implicit argument.
Semiformal description:

In SAF, replace <X,np,io> with <X,rp,implarg>.

Rule statement: 10_del

(Ex. gi Jon penger -> gi penger]

Free I0O-insertion:

Informal description:

Introduce a 'free' 10, i.e. an IO whose role is not central to the verb in question.
Semiformal description:

In SAF, provided there is a <X,np,gov>, insert <ben,np,io>.

Rule statement: Free_IO_ins
[Ex. slakte en sau-> slakte Esau en sau]

I'V-SmallClause-formation:

(covers IV-smallcl_AP, I'V-smallcl_AdvP and IV-smallcl_PP)

Informal description:

In the frame of an intransitive verb, add a direct object and an AP, AdvP or PP
predicated of the object. In LLF, if the input construction is p and the added
predication relation is q, the new construction is 'p cause q'.

Semiformal description:

In SAF, provided there is no <X,np,gov>, insert <scsu,np,gov> and <pred, cat,
predic>, where pred is either of the values ‘degprd’ or (as the default) 'prd’, and car
is a specified head or, as the default, the category ‘ap', 'advp' or 'pp' according to
whether the rule is IV_smallcl_AP, IV_smallcl_AdvP or IV_smallcl_PP.

In LLF, ...[to be supplied]

- Rule statement: I'V_smallcl_AP(argl,arg2)

where argl is 'degprd’ or 'prd' and arg2 is adj_a or ap.
IV_smallcl_AdvP(argl,arg2)

where argl is ‘degprd'or 'prd' and arg2 is adv_adv or advp.
IV_smallcl_PP(argl,arg2)

where argl is 'degprd’ or 'prd' and arg2 is prep_p or pp.

In each case the default is the option mentioned last.
[Ex. skyte -> skyte magasinet tomt, spise -> spise tallerkenen tom)

Comment: When a single word is entered as category, this is interpreted in
Interpretation as a phrase headed by the word in question.

TV-SmallClause-formation:

(covers TV-smalicl_AP, TV-smallcl_AdvP and TV-smalicl_PP)

Informal description:

In the frame of a transitive verb, add an AP, AdvP or PP predicated of the object. In
the LLF, if the input construction is p and the added predication relation is q, the
new construction is 'p cause q'.

Semiformal description:

In SAF, change <X,np,gov> into <tvscsu,np,gov>, and add <pred, cat, predic>,
where pred is either of the values ‘degprd’ or (as the default) 'prd’, and cat is a

specified head or, as the default, the category 'ap’, 'advp' or 'pp’ accordin'g to
whether the rule is TV-smallcl_AP, TV-smallcl_AdvP or TV-smallcl_PP.

In LLF, ...[to be supplied; it is assumed that whatever role is covered by X in the
original DO is preserved in LLF]

Rule statement: TV_smallcl_AP(argl,arg2)
where argl is 'degprd’ or 'prd' and arg2 is adj_a or ap.
TV _smallcl_AdvP(argl,arg2)
where argl is 'degprd’ or 'prd’ and arg?2 is adv_adv or advp.
TV _smallcl_PP(argl,arg2)
where argl is 'degprd' or 'prd' and arg2 is prep_p or pp.
In each case the default value is the last one.
[Ex. sparke ballen - sparke ballen flat]

Comment: When a single word is entered as category, this is interpreted in
Interpretation as a phrase headed by the word in question.

_Depictive small clause:
Informal description:
Add a predicative AP or PP to a DO, with the interpretation that the verb takes
'DO+predic’ as a propositional argument, with no causative interpretation.
Semiformal description:
Turn <X,np,gov> into <scsu,np,gov>, and add <prd,cat,predic>.
In LLF, 'DO+predic' is interpreted as a propositional argument, with no causative
‘interpretation.

Rule statement: Depict(arg)
where arg is the category of predic, being either pp or
(default) ap.

[Ex. like kaffen -> like kaffen varm)

Accusative with infinitive:

Informal description:

Semiformal description:

Turn <th,at_S, gov> into <scsu,np,gov>, and add <prd,inf,predic>.
In LLF, there is no change.

Rule statement: Acl
[Ex.: se at Jon kommer-> se Jon komme]

Object qualification:

Informal description:

An AP or PP is added as a qualification of a DO, while the DO retains its role
relative to the verb. There is no causative interpretation. '
Semiformal description:

If there is a <X,np,gov>, add <prd,cat,adjct>.

Rule statement: ObjQual(arg)
where arg is the category (pp or (default) ap).
[Ex.: drikke kaffen -> drikke kaffen varm]

Comment:
The frame-independent character of the added constituent is marked through the -
functional label 'adjct' (=adjunct). It's conceivable that this is a purely syntactic
process.

Cognate object:

Informal description:

In the frame of an intransitive verb, add a direct object which expresses the type of
act which generally instantiates the verb.

Semiformal description:

In a SAF with no <X,np,gov>, add an argument '<cogob,np,gov>",

In LLF, ...[to be supplied].

- Rule statement: CogObyj
[Ex. dg -> dg en behagelig dgd]

Inherent object:

Informal description:

In the frame of an intransitive verb, add a direct object which expresses the type of
material which goes into the act instantiating the verb.

Semiformal description:

In a SAF with no <X,np,gov>, add an argument '<inherob,np,gov>".

Rule statement: InhObj
[Ex. spytte spytt, skyte plastikkuler, male maling, harke slim]

load-alternation:

Informal description:

In a frame with an inherent object and a locational type of PP, turn the NP of that
PP into a direct object, and the inherent object into a PP. Semantically, Aspect now
becomes resultative.,

Semiformal description:

In SAF, turn <inherob,np,gov> into <inherob,np,med> and <target, np,pgov> into
<target,np, gov>.

In the semantics, specify SemPrep-> Aspect -> Resultative.

Rule statement: load_alt
[Ex. laste hgy pd vogna -> laste vogna med hgy; fylle vann i bgtta -> fylle bgtta

med vann]

Comment:

The process resembles be-alternation in the operation on the frame, a differénce
being that the latter does not yield resultative aspect.

The term "pgov’ in the structural description is met by 'pgov' as well as any specific
preposition (what count as prepositions being provided in a separate list). :

If no <inherob,np,gov> is present in the input template, the rule still applies with
regard to the second argument, yielding alternations like

[Ex. laste pd vogna -> laste vogna; fylle i bgtta -> fylle bgtta].

be-alternation: ,

Informal description:

If the frame contains an inherent object and a directional or locative PP, turn the PP
into an NP and the inherent object into a PP, and affix be to the verb. '

Semiformal description:

In SAF, turn <inherob,np,gov> into <inherob,np,med> and <target, np, pgov>
into <target,np, gov>, and prefix be to the verb.

Rule statement: be_alt
[Ex. skyte plastikkuler pd Jon -> beskyte Jon med plastikkuler.]

Comment:

This rule derives items belonging to new lexemes.

The process closely resembles Load-alternation, but it has no aspectual part like
Load-alternation.

The term 'pgov' in the structural description is met by "pgov' as well as any specific
-preposition (what count as prepositions being provided in a separate list).

If no <inherob,np,gov> is present in the input template, the rule still applies with
regard to the second argument, yielding alternations like

[Ex. synge om Trondheim -> besynge Trondheim]

Part-whole-to-DO:

Informal description:

If an intransitive verb V has a frame where it takes a PP with 'target’ role, then it
also has a frame where it takes a DO preceding the PP, where the DO expresses a
whole relative to which the PP denotes a part.

Semiformal description:

In a SAF with no <X,np,gov>, but with an argument <target,pp,pp_arg>, turn this
argument into 'part,pp,pp_arg> and add an argument <whole,np,gov>.

Rule statement: Part_Wh_to_DO
[Ex. spytte i ansiktet til Jon -> spytte Jon i ansiktet.]

Part-whole-to-I0:

Informal description:

If a transitive verb V has a frame where it takes a PP with "target’ role, then it al$o
has a frame where it takes an 10 expressing a whole relative ic which the PP
denotes a part.

LN

Semiformal description:

In a SAF with no <X,np,io>, but with an argument <Y,np,io> and
<target,pp,pp_arg>, turn the latter argument into 'part,pp,pp_arg> and add an
argument <whole,np,io>. '

Rule statement: Part. Wh_to_IO
[EX. kaste ngtter i hodet p4 Jon -> kaste Jon ngtter i hodet.]

Adv-to-DO: .

Informal description:

An adverbial becomes a DO.

Semiformal description:

In a SAF with no 'gov', and with an argument whose role is 'path’, specify this
argument as '<path,np,gov>'.

Rule statement: Adv_to_DO
[Ex. gd veien, jump the fence]

“Causativization with non-ca:
Informal description:
If a verb has a single, non-agentive argument, then add an agentive argument
interpreted as causer of the activity expressed by the original construction.
Semiformal description:
In a SAF with no ea and with a gov, add an argument <agent,np,ca>.
In LFF, if the representation of the input is 'p' and the introduced agent is
represented as 'a’, then the new SAF is represented as ‘a cause p',

Rule statement: Caus
[Ex. ... koker vannet -> Jon koker vannet)

Comment:
Both individuals and events can act as causes; cf. the LLF of small clauses.

Causativization with ea:

Informal description:

If a verb has a single argument, then add an agentive argument interpreted as causer
of the activity expressed by the original construction.

Semiformal description:

In a SAF with no gov, turn <X,np,ea> into <X,np,gov>, and add an argument
‘<agent,np,ea>’.

In LFF, if the representation of the input is 'p' and the introduced agent is
represented as 'a’, then the new SAF is represented as ‘a cause p'.

Rule statement: Ea_caus
[Ex. the horse walked -> John walked the horse]

Comment:
Both individuals and events can act as causes; cf. the LLF of small clauses.

DO-reflexivization:

Informal description:

A DO is reduced to the short' reflexive form seg, and the construction means that
the referent of the subject performs the act expressed by the verb upon itself.
Semiformal description: '

In SAF, turn <X,np,gov> into '<norole,seg,refl>.

In LLF, specify the referent of the initial gov as identical to the referent of ea.

Rule statement: DO_refl
[Ex. Jon vasker NP -> Jon vasker seg]

Comment:

In these constructions, the 'object' role is still understood, a circumstance which is
expressed in LLF. They differ from the type skamme seg, where no object role is
understood.

I0-reflexivization:
Informal description:
An 10 is reduced to the short' reflexive form seg, and the construction means that
the referent of the subject performs the act expressed by the verb with itsclf as bene-
or malefactive part.
 Semiformal description:
In SAF, turn <X,np,io> into '<norole,seg,refl>.
In LLF, specify the referent of the initial io as identical to the referent of ca.

Rule statement: 10_refl
[Ex. Jon kjgpte NP en frakk -> Jon kjgpte seg en frakk; Jon unte NP en ferie ->
Jon unte seg en ferie]

Comment:

Like in the DO-reflexivization constructions, the 'indirect object' role is still
understood, a circumstance which is expressed in LLF. The IOs which undergo this
process can be either 'bound’ or 'free'.

Passive-short:

Informal description:

The external argument (subject) in the input template is 'demoted’ to an implicit
argument, and the verb appears in passive form.

Semiformal description:

Turn <X,np,ea> into <X,rp,implarg>.

Rule statement: Pass_sh
[Ex. Jon leser boken -> ... blir lest boken]

Passive-long:

Informal description:

The external argument (subject) in the input template is ‘demoted’ to a PP with av as
preposition, and the verb appears in passive form.

Semiformal description:

Turn <X,np,ea> into <X,np,av>.

Rule statement: Pass_lo
[Ex. Jon leser boken -> blir lest boken av Jon]

Promotion to EA:

Informal description:

A direct object becomes subject.

Semiformal description:

In a SAF with no ea, turn <th,np,gov> into <th,np,ea>.

Rule statement: Prom_to_ea
[Ex. ... koker vannet -> vannet koker]

Demotion from EA:

Informal description:

A subject becomes direct object, as in agentive presentational constructions.
Semiformal description:
“In a SAF with no gov, turn <X,np,ca> into <X,np,gov>.

Rule statement: Dem_from_ea
[Ex.: En katt satt i trappen -> satt en katt i trappen.]

Comment;
This process is necessarily followed by Det-insertion. It never reverses the effect of
Promotion to EA, or vice versa.

Det-insertion:

Informal description:

If the subject position is empty, insert the expletive det. There are two types of det,
one which can alternate with der in certain dialects and corresponds to der in
Danish and there in English, and one which corresponds to it in English.
Semiformal description:

In a SAF with no ea, if there is a <X,at_S,gov> or <Y,Z,compl>, insert
<norole,det_it,ea>, otherwise insert <norole,det_there,ea>.

Rule statement: det_ins
|Ex. forckommer meg at Jon er syk -> det foreckommer meg at Jon er syk, ... satt
en katt i trappen -> det satt en katt i trappen]

Comment:

The presence of det requires that <X,np,gov> be indefinite. We leave open whether
such a requirement should be built into this rule. .
The 'it'-version is required also with weather-verbs and possibly in other cases;
since the difference is not critical in Norwegian, the details are left for a language
where they matter.

Subject-predicate adjunction_AP/PP/AdvP:

Informal description:

Add an AP, PP or AdvP interpreted as a predicative of the subject. The meaning is
either a fullfledged predicate or a degenerate predicate.

Semiformal description:

In SAF, provided there is no <X,np,gov>, insert <pred, cat, predic>, where cat is
a specified head or, as the default, the category "ap', 'advp' or 'pp' according to
whether the rule is Subject-predicate adjunction_AP, Subject-predicate
adjunction_PP or Subject-predicate adjunction_AdvP, and pred is either of the
valucs ‘degprd’ or (as the default for '_AP’) 'prd’ or (as the default for the others)
‘dir'":

In LLF, ...[to be supplied]

Rule statement: SuPredAd_AP(argl,arg2)
where argl is 'degprd' or 'prd' and arg2 is adj_a or ap.
SuPredAd_AdvP(argl,arg2)
where argl is 'degprd’ or 'dir' and arg2 is adv_adv or advp.
SuPredAd_PP(argl,arg2)
where argl is 'degprd’ or 'dir' and arg2 is prep_p or pp.

In each case the default is the option mentioned last.
[Ex. g& -> g ut (i glrden), sovne -> sovne inn (i en evig sgvn), g4 tom]

Comment: When a single word is entered as category, this is interpreted in
Interpretation as a phrase headed by the word in question.

In LLF, when role is 'direction’, the effect is that the new item (b) is interpreted as a
locative predicate of the subject (a); given that the input frame is represented as 'p,
the derived frame is represented as 'p cause b(a)'. The same schema applies if role
is 'prd'. If role is 'degpred’, the LLF must be decided from case to case.

PP-adjunction:

Informal description:

Add an 'indirect argument’ PP in the frame of a verb, where the choice of P may be
verb dependent, either as a function of the roles associated with the verb, or as
word-idiosyncratc selection. This rule can be reapplied, in principle indefinitely.
Semiformal description: '
In SAFE, add an argument <role,np,pgov/prep>, where role is among those that
count as central relative to the verb. ‘pgov' is the default value in the function-slot.

Role being central, it is among those roles which have one unique instantiation in
each frame.

For technical reasons, on each new application of the rule, it is technically a
different rule, distinguished from the previous one by the addition of a cipher to the
function-value, one larger than in the previous rule. For instance, the first

application ir.iroduces <role,np,pgov1>, the second <role,ng,pgov2>, etc. (we let

absence of cipher be equal to 'l'); or <role,np,medl> followed by
<role,np,med2>. (The ciphers are ignored for interpretive purposes.)

Rule statement: PP_ad(argl,arg2)

where argl is a specified role or the default value 'unsp’,
and arg?2 is a specified preposition or the default value
‘pgov’.

PP_ad2(argl,arg2)
where argl is a specified role or the default value 'unsp’,
and arg? is a specified preposition with cipher '2' attached
or the default value 'pgov2'.

PP_ad3(argl,arg2)
where argl 1s a specified role or the default value 'unsp',
and arg? is a specificd preposition with cipher '3 attached
or the default value 'pgov3'.

eic.

[Ex. snakke -> snakke med Ola -> snakke med Ola om Marit]

Incorporation
(covers Incorp_A, Incorp_P and Incorp_Adv):
Informal description:
The preposition of an indirect argument, or an adjective constituting a predicative
AP, or the adverb head of an AdvP with predicative function, is prefixed to the
verb.
Semiformal description:
Incorp_A: In a frame {<scsu,np,gov>,<prd/degprd,ap,predic>}, delete the predic
argument and incorporate a specified adjective into the verb, The LLF remains
unchanged.
Rule statement: Incorp_A(arg)

where arg is a specified adjective.
(Ex. male huset rgdt -> rgdmale huset]

Incorp_P: If there is no gov in the frame, turn <X,np,pgov/prep> into
<X,np,gov>; if there is a gov but no io, the result is <X,np,io>. In either case, a
specified preposition is incorporated into the verb. The LLF remains unchanged.
Rule statement: Incorp_P(arg)

where arg is a specified preposition.
[Ex. tale om Ola -> omuale Ola; sende penger til Ola -> tilsende Ola penger)

10

Incorp_Adv: Given an argument <dir/degprd,advp,predic> (whether there is a
governee or not), either delete this argument or turn it into <dir,pp,pp_arg>. In
either case, incorporate a specified adverb into the verb. The LLF remains
unchanged. '
Rule statement: Incorp_Adv(arg)

where arg is a specified adverb. .
[Eks. sparke ballen bort -> bortsparke ballen; lyse stillingen ut -> utlyse stillingen;
sovne inn -> innsovne; vise Per bort fra banen -> bortvise Per fra banen]

Comment:
This rule creates new lexemes. Often the result has a different meaning than the
input construction, but this generally seems due to a 'drift’ effect which has to be
specified word by word. For instance, gdelegge means something different than
legge gde, but the 'new’ meaning can be understood as a drift applied to the
meaning of the original construction. Such cases seem consistent with the
persistence principle, the 'drift' counting as a factor on top of the constructional
ones in the construction of the meaning.

There still exist cases of apparent Incorporation whose meaning has nothing to
do with any conceivable input frame; such cases are not derived by this rule.

Predic-movement:
Informal description:
An adjective or adverb serving as a predicative of the DO is moved to the left of DO.
Semiformal description:
“In a SAF with gov, turn <X,Y ,predic> into <X,Y,preposed_predic>.

Rule statement: PredicMvt
[Ex.: sparke ballen ut -> sparke ut ballen]

Comment: 'preposed_predic' is a functional label, meaning that the item
characterized occurs before the sc_subj. As a functional label, it is a cheater for
information which is otherwise tied to the realization level, namely information
about precedence relations.

Substitution NP-atS:
Informal description: Replace an NP with an at-clause.
Semiformal description: Turn <th,np function> into <th,at_S function>.

Rule statement: atS(arg)

where arg provides the function (ea, gov, pgov ora specified preposition
as p-govemnor).
[Ex.: (atS(gov): Per sa sannheten -> Per sa at han var syk]

Substitution NP--inf:
Informal description: Replace an NP with an d-infinitive. With regard to control
properties, the infinitive has threc options: being regularly controlled (i.e., being

11

1.2

controlled by the closest c-commanding NP), having marked control (i.c., being
controlled by a subject across an object), and having arbitrary control. This gives
three different types of d-infinitives, and thus three sub-rules.

Semiformal description: :
Ainf_regcontr: Turn <th,npfunction> into <th,d_inf_regcontrfunction>.
(Correspondingly for the other types.) ; .
In LLF, the infinitive is treated as a proposition; i.e., this infinitive may be
syntactically construed as 'PRO VP

Rule statement: 4inf_regcontr(arg)
&inf_markcontr(arg)
Ainf_arbcontr(arg)
where arg in each case provides the function (ea, gov, pgov or a specified
preposition as p-governor).

(Ex.: (&inf_regcontr(gov) Per prgvde skoene -> Per prgvde & gé]

Substitution NP - hvS:

Informal description:

Replace NP with a wh-clause.

Semiformal description:

Turn <th,npfunction> into <th,hv_S function>.

Rule statement: hvS(arg)

where arg is the function of the replaced NP (being gov, pgov or governed by

“some specified preposition).

[Ex.: si sannheten -> si hvem som hadde gjort det]

Substitution NP - omS:
Informal description:
Replace NP with an om-clause.
Semiformal description:
Turn <th,np,funcrion> into <th,om_S function>.
Rule statement: omS(arg)
where arg is the function of the replaced NP (being gov, pgov or governed by
some specified preposition).
[Ex.: lure pd svaret -> lure pd om du hadde gjort det]

Subject Raising:

Informal description: A small clause subject or a clausal infinitive subject is 'raised’
to subject position of the matrix verb.

Semiformal description:

Turn <scsu,np function> into <scsu,efunction>, and add <no,np,ea>.

Rule statement: SubjRais(arg)
where arg is the function of the NP 'raised’ (i.e., gov or pgov)
[Ex.: late til Per & veere syk -> Per later til [e] 8 vare syk;

13

synes Per & vare syk -> Per synes [e] & vare syk;
synes Per syk -> Per synes [e] syk]

Comment: We here assume that traces are left by the movement. The alternative of
doing without traces also seemsopen, however.

Substitution of 3-inf with predic-AP :

Informal description:

An &-inf serving as object predicative is replaced by an AP with the same function.
Semiformal description:

Turn <prd,4_inf,predic> into <prd,ap,predic> .

In LLF, this infinitive behaves as a predicate.

Rule statement: Ainfﬁlo__Prcdic_AP
[Ex.: synes Jon 4 vare syk -> synes Jon syk]

Substitution of atS with clausal infinitive:

Informal description:

Replace an at-S by a clausal infinitive.

Semiformal description:

Replace the argument <th,at_S,function> by <scsu,npfunction> and <prd,&_inf,
predic>.

Rule statement: atS_to_Cl_inf(arg)
where arg is the function of the NP (gov or pgov).
[Ex.: later til at Jon er syk -> later til Jon & vare syk;
forckommer meg atJon er syk -> forekommer meg Jon & vaere syk]

Substitution of propositional complement with small clause structure: :
Informal description:

Replace a som- or som om-clause with an NP plus a predicative AP.

Semiformal description:

Replace the argument <prop_arg,som_om_S,compl>, or
<prop_arg,som_S,compl> by <scsu,np,gov> and <prd,ap,predic> .

In LLF, the propositional argument is retained.

Rule statement: Prop_compl(arg)_to_SC
where arg is the category label, 'som_om_S' or 'som_S".
[Ex.: virker som om Jon er syk (or) virker som Jon er syk-> virker Jon syk]

Raising copying

Informal description:

From a propositional argument structure with som or som om, make the subject of
the clause into subject of the matrix verb, and leave a pronominal copy in the
original position.

Semiformal description:

In a SAF with no ea and a <prop_arg,cat,compl>, turn the latter into
<prop_arg,cat,subj_contr_compl>, and add <no,np,ea>.

Rule statement: RaisCop(arg)
where arg is the category label of the complement, 'som_om_S' or 'som_S".
[Ex.: virker som (om) Jon er syk -> Jon virker som (om) han er syk]

Anti-extraposition

Informal description:

Move a clausal complement to subject position.
Semiformal description:

Turn <th,at_S function> into <th,at_S,ea>.

Rule statement: Anti_exp(arg)
where arg is the function of the complement, default being gov.
[Ex.: bekymrer meg at Jon kom -> at Jon kom bekymrer meg]

Experiencer movement

Informal description:

Semiformal description: :

Turn <exp,np,io> into <exp,np,ea>, and <th,np,gov> into <th,np,over>, and add
<norole,seg,refl>. '

-Rule statement: ExpMvt
[Ex.: irriterer meg katten -> jeg irriterer meg over katten]

Comment:
If the rule applies after DO-del, the rule still applics, deriving alternations like
[Ex.: irriterer meg -> jeg irriterer meg |

Experiencer adjectival construction:

Informal description:

Semiformal description:

Turn <exp,np,io> into <exp,np,ea>, and <th,np,gov> into <th,np,over>, and turn
the verb into a participial adjective.

Rule statement: ExpAdj
[Ex.: irriterer meg katten -> jeg er irritert over katten)

Comment:
If the rule applies after DO-del, the rule still applies, deriving alternations like
[Ex.: irriterer meg -> jeg er irritert)

Substitution of for §-inf with predic som :
Informal description:
Semiformal description:

14

15

Turn <prd,a_inf,for> into <prd,cat,som>, where cat is ap or np.
In LLF there is no change.

Rule statement: for_ainf_to_predic_som(arg)

where arg is the category of the input predicative.
[Ex.: anse Jon for & veere skyldig -> anse Jon som skyldig ; anse Jon for & vare .
(en) tyv -> anse Jon som (en) tyv]

Ergative seg insertion:

Informal description:

Semiformal description:

In a SAF with <th, np,gov> but without ea, insert a reflexive seg.
Rule statement: Erg_refl

(Ex.: &pner en dgr -> Apner seg en dgr ; reiser et tirn -> reiser seg et tirn]

Substitution PredicNP - PredicPP:
Informal description:

- Replace NP with a PP.
Semiformal description:
Turn <prd,NP,predic> into <prd, PP,predic>
Rule statement: PP(arg))

where arg is the function of the replaced NP,

[Ex.: kalle Jon et geni -> kalle Jon for et geni]

op 8

-

&

B8 10= 1889 1000 HD 40 IIcx:Derivation:ger-basictemp

German: Basic templates

(1) intransitive verb
SAF: <ag,np,ea>
Statement:iv

[Ex:z - singt]

'He sings'

(2, ergative verb
SAF: <th,np,gov>
Statement:erg !
[Ex:_kocht das Wasser)
' boils the water'

(3) experiencer intransitive verb
SAF: <exp,np,ea>
Statement:exp iv

(Ex:er friert)

'He freezes'

(4) transitive verb

SAF: <ag,np,ea>,<th,np,gov>
Statement:tv

[Ex:er kauft elnen Hut]

"He buys a hat'

(5) theme transitive verb

SAF: <th,np,ea>,<th,np,gov>
Statement:th_tv

[Ex:das Papier absorbiert die Tinte]
'"The paper absorbs the ink!’

(6) experlencer transitive verb
SAF: <exp,np,ea>,<th,np,gov>
Statement:exp_tv

[Ex:er mag Kaffee]

"He likes coffee'’

(7) ditransitive verb

SAF: <ag,np,ea>,<ben,np,10>,<th, np, gov>
Statement:ditv

[Ex:er gibt 1hm Geld]

'He gives him money'

(8) reflexive verb ;
SAF: <exp,np,ea>,<norole,sich,refl>
Statement:refl

[Ex:er schamt sich]

'He shames refl'

(9) psychl

SAF: <exp,np,ioc>,<th,np,gov>
Statement:psychl
[Ex:_langweilt ihn das Buch]
' bores him the book'

(10) psych?

SAF: <exp,np,io>,<th,np, function>
Statement:psych?2

(Ex: geliistet ihn nach Abenteuern]
"he hungers for adventures!'

(11) raisvl
SAF: <norole,sich,refl>,<th,daB_S,gov>
Statement:raisvl

7arr. 8

Page 1

03-10-1989 10:00 HD 40 IIcx:Derivation:ger-basictemp Page

[Ex:_zeigt sich dah Tom kompetent ist]
' shows refl that Tom is competent'

(12) raisv2

SAF: <exp,np,io>,<prop arg,cat,compl>
Statement:;raisv?2

(Ex: kommt mir so vor als ob]

' appears to me as if'

(13) raisv3

SAF: <exp,np,io>,<th,dal_S, gov>
Statement:raisv3

[Ex: scheint mir daB Tom krank ist]
'_seems to me that Tom is ill’

(14) depictive verb

SAF: <ag,np,ea>,<norole,sich,refl>,<th, np, gov> .
Statement:depict

[Ex:er stellt sich Tom vor)

'he imaginesrefl Tom'

(15) small clause

SAF: <ag,np,ea>,<norole,sich,refl>,<th, np, gov>
Statement:smallcl

[Ex:man sieht ihn fir einen Idioten an]

'one regards him as an 1diot'

{16) intransitive verb locative
SAF: <X,np,ea>,<loc,¥Y,gov>
Statement:iv_loc(argl,arg2) |
where argl is ag(default) or th, and arg2 is pp(default) or advp
[Ex:er wohnt in der Stadt]
"he lives in town'

(17) reflexlive verb locative
SAF: <X,np,ea>,<norole,sich,refl>, <loc,Y,gov>
Statement:refl_ loc(argl,arg?2)
where argl is ag(default) or th, and arg2 is pp(default) or advp
[Ex:er h< sich hier in der Stadt]
'he stays here'

(18) transitive verb locative
SAF: <ag,np,ea>,<th,np,gov>,<loc,np, function>
Statement:tv_loc(arg)
where arg is pgov(default)
[Ex:er stellt dile Vase auf den Tisch]
'he puts the vase on the table!

(19) indirect argument
SAF:<th, np,ea>, <X,np,function>
Statement:ind arg(arg)

where arg is pgov or case
[Ex: seine Ansicht beruht auf einem Irrtum]
'his opinion rests on an error'

(20) indirect argument reflexive
SAF: <ag,np,ea>,<norole,sich,réfl>,<th, np, function>
Statement:ind_arg_refl (arg)
where arg is pgov or case
[Ex: er vergewlssert sich seines Daseins]
'he assures himself of his existence!

(21) weather verb
SAF:0

Statement :weather
[Ex: schneit]

' _snows'

M3-10~19849 10:00 HD 40 IIcx:Derivation:ger-basictemp

(22) measure verb
SAF:<th,np, ea>, <measure, np, predic>
Statement:measure

{Ex: der Stein wiegt 1 kg)

'the stone weighs 1 kg'

(23) representative verb
SAF:<th,np,ea>, <repr,np,gov>
Statement:repr

[Ex: das Bild stellt Tom dar]

(24) appellative 1
SAF:<aqg, np, ea>, <scsu, np,gov>,<prd, np, function>
Statement:appellatl (arg)
where arg is pgov(default)
(Ex: er ernennt ihn zum Kénig]
'he nominates him king'

(25) appellative 2
SAF:<ag, np,ea>, <scsu, np,gov>,<prd, Y, predic>
Statement:appellatl (arg)
where arg is ap(default) or np
(Ex: er nennt ihn ein Genie]
'he calls him a genius!

(26) reflexive manner
SAF:<th,np,ea>, <repr,np,gov>
Statement:refl mariner (argl,arg?2)

where argl is ag(default) or th, and arg 2 is advp(default)

[Ex: er benahm sich vorbilildlich]

'he behaved himself well' ’
(27) ergative ditransitive
SAF:<ben, np,gov>,<th, np, gov>
Statement:erg ditr

[Ex: -erwartet ihn eine Katastrophe)
'_awalted him a catastrophe'

(28) dat verb
SAF:<ag, np,ea>, <ben,np, io>
Statement:dat '

[Ex: er winkt 1hm, er vertraut ihm, er begegnet ihm]

'he trusts him'

(29) double acc verb

SAF:<ag, np, ea>, <ben, np, gov>,<th, np, gov>
Statement:double_acc

[Ex: er lehrt ihn Schwimmen,]

'he teaches him swimming'

(30) ergative éxperiericer verb
SAF:<ben, np, {0>, <th, np, gov>
Statement:erg_exp

[Ex: passiert ihm ein Ungliick]
'happens him an accident’

Page 3

03-10-1989 1C0:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 1

xtemplate (1, iv,
(['Er schieft' : [basic : base],
'es singt sich gut hier':
[IVmiddle' : base ++ IV_middle'],
'Er singt ein Lied' : ['CogObj' : base ++ 'CogObij'],
'wurde ein Lied gesungen ' :
['CogCbj Pass' : base ++ 'Cog0Obj' ++ 'Pass'],
'Das Lied singt sich gut':
['TVvmiddle' : base ++ 'CcgObj' ++ '"TV middle'],
'Er sang ihr ein Lied' -

['FreeIOins' : base ++ 'CogObj' ++ 'Free IO ins'],
'Er singt sich ein Lied!

('ICrefl' : base ++ 'CogObj' ++ 'Free IO ins' ++ 'IO refl'],
'Er schieBt Schrot' : ['InhObj' : base ++ 'InhObj']l,
'wurde Schrot geschossen'

['InhObj Pass' : base ++ 'InhObj' ++ 'Pass'],

'Er schielt die Kugeln weg' :

('TVsmallclAdvP' : base ++ 'InhObj' ++ 'TV smallcl AdvP'],
'die Kugeln wegschiepen' - N

('TVsmallclAdvP_IncorpAdv'

base ++ 'InhObj' ++ 'TV smallcl AdvP' ++
'Incorp Adv'(_ 487, 488)], -
'wurden die Kugeln weggeschossen'
['TVsmallclAdvP_IncorpAdv_Pass!'

base ++ 'InhObj' ++ 'TV_smallcl_AdvP' ++'Incorp Adv'() ++ 'Pass'],
'Exr schiefBt die Kugeln warm'
['T¥smallclAP' : base ++ 'InhObj' ++ 'TV_smallcl AP'],

'die Kugeln warmschiefBen'
['TVsmallclAP_IncorpA' :
base ++ 'InhObj' ++ 'TV_smallcl AP" ++
'Incorp_A'(_1057, 1058)], n
'wurden warmgeschossen die Kugeln'
['TVsmallclAP_IncorpA Pass'
base ++ 'InhObj' ++ 'TV_smallcl AP' ++
'Incorp A'(1181, 1182) ++ 'Pass'],
'"Er schieft die Kugeln in die Luft'
("TVsmallclPP' : base ++ 'InhObj' ++ 'TV smallcl PP'],
'wurden die Kugeln in die Luft geschossen™ -
['TVsmallclPP_Pass'
base ++ 'InhObj' ++ 'TV smallcl PP' ++ 'Pass'],
'"Exr schieBt Kugeln auf Jon' -
['InhObj_PPad'
base ++ 'InhObj' ++ 'PP ad'(1337, 1338)],
'wurden Kugeln auf Jon geschossen' :
['InhObj PPad Pass'
base ++ 'InhObj' ++ 'PP ad'(1454, 1455) ++ 'Pass'],
'"Er schieBt Jon mit Kugeln' B -
('InhObj PPad loadalt' : _
base ++ 'InhObj' ++ 'PP ad'(1929, 1930) ++ load alt],
'wird gemalt die Wand mit' B N -
['InhObj PPad loadalt Pass'
base ++ 'InhObj' ++ 'PP_ad'(_2049, 2050) ++ load alt ++ 'Pass'],
'Er malt sich mit' :
['InhObj_PPad_loadalt DOrefl'
base ++ 'InhObj' ++ 'PP_ad'(_2170, 2171) ++ load_alt ++

'DO_refl'],
'Die Glocken lduten die Felertage ein' :
['IVsmallclAdvP' : base ++ 'IV_smallcl_AdvP'],

'die Feiertage einlé&uten'
["IVsmallclAdvP_IncorpAdv' :
base ++ 'IV_smallcl AdvP' ++ 'Incorp Adv'(2587, 2588)],
'wurde eingeldutet die Feiertage! B
("IVsmallclAdvP_IncorpAdv_Pass'
base ++ 'IV_smallcl_AdvP' ++ 'Incorp Adv'(_2718, 2719) ++ 'Pass'],
'Er trdumt sich weg'
('IVsmallclAdvP _DOrefl' : base ++ 'IV _smallcl AdvP' ++ 'DO refl'],
"Er lduft die Schuhe schief' - -
['IVsmallclAP' : base ++ 'IV_smallcl_AP'],

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 2

'werden schiefgelaufen die Schuhe!
["IVsmallclAP InccrpA Pass'
base ++ 'IV_smallcl AP' ++ 'Incorp A'(3273, 3274) ++ 'Pass'],
'die Sohlen schieflaufen'
('IVsmallclAP IncorpA' :
base ++ 'IV smallcl AP' ++ 'Incorp A'(3153, 3154)],
'"Exr singt sich froh' o

['IVsmallclAP_DOrefl' : base ++ 'IV_smallcl AP' ++ 'DO refl'],
'Exr singt alle in gute Laune' o n
["IVsmallclPP' : base ++ 'IV smallcl PP'],
'wurden alle in gute Laune gesungen ' :
['IVsmallclPP_Pass' : base ++ 'IV smallcl PP' ++ 'Pass'],
'"Er singt sich in Stimmung’ - -
["IVsmallclPP_DOrefl' : base ++ 'IV smallcl_PP' ++ 'DO_refl’'],
'"Er geht aus' : ['SuPredAdAdvP' : base ++ 'SuPredAd AdvP'],
'wurde ausgegangen' -
['SuPredAdAdvP_Pass' : base ++ 'SuPredAd AdvP' ++'Incorp Adv'()++ 'Pass'],
'ausgehen' B

['SuPredAdAdvP IncorpAdv'
base ++ 'SuPredAd AdvP' ++ 'Incorp_ Adv'(3736, 3737)],

'Der Motor l&uft leer' : ['SuPredAdAP' : base ++ 'SuPredAd AP'],
'Er geht an Land'
['SuPredAdPP' : base ++ 'SuPredAd PP'],

'"Exr spricht mit Tom' :
[*PPad' : base #+ 'YPP ad'(3882, 3883}],
'wurde mit Tom gesprochen'
['PPad_Pass' : base ++ 'PP ad'(3996, 3997) ++ 'Pass'],
'"Er spricht mit Tom iibers Essen' -
('PPad_PPad' :
base ++ 'PP_ad'(_4206,_4207) ++ 'PP_ad'(_4106, 4107)],
'wurde mit Tom lbers Essen gesprochen'
{'PPad_PPad_Pass'
base ++ 'PP_ad'(_4419,_4420) ++ 'PP_ad'(_ 4319, 4320) ++ 'Pass'],
'den Chef sprechen':
('PPad PPtoDO':
base ++ 'PP_ad'(4419, 4420) ++ 'PP to DO'],
'"Er iiberspricht die Sache' -7
['PPad_IncorpP' .
base ++ 'PP_ad'(_4636,_4637) ++ 'Incorp P'(_4533, 4534)],
'wurde Ubersprochen die Sache' :
['PPad_IncorpP_Pass'
base ++ 'PP_ad'(_4857,_4858) ++ 'Incorp P'(4754, 4755) ++
'Pass'],
'Er malt die Wand'
['PPad loadalt'
base ++ 'PP_ad'(_5318, 5319) ++ load alt],
'wird gemalt die Wand' :
['PPad_loadalt_Pass' :
base ++ 'PP_ad'(_5435, 5436) ++ load alt ++ 'Pass']),
'Er malt sich!
('PPad loadalt DOrefl' :
base ++ 'PP_ad'{ $552, 5553) ++ load alt ++ 'DO_refl'],
'Er schief3it ihn ins Bein!'
['PartWhtoDO' .
base ++ 'PP_ad'(_5665, 5666) ++ 'Part Wh to DO'},
'Er schieft ihm ins Bein' - T
['PartWhtoIO'
base ++ 'PP_ad'(5665, 5666) ++ 'Part Wh to IO'],
'wird geschossen Tom ins Bein' -0 T
('PartWHtoIO Pass' ;
base ++ 'PP_ad'(_5782,_5783) ++ 'Part_Wh to IO' ++ 'Pass'l],
'"Er schieft sich ins Bein' :
['PartWHtoDO DOrefl'
base ++ 'PP_ad'(_ 5899, 5900) ++ 'Part_Wh_to DO' ++ 'DO refl'],
'"Er geht den langen Weg' : ['AdvtoDO' : base ++ 'Adv to DO'],
'wird gegangen der Weg' : -
['AdvtoDO_Pass' : base ++ 'Adv_to DO' ++ 'Pass']])).

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 3

“template (2, erq,

['kocht das Wasser' : [basic : base],

'Das Wasser kocht' : ['Promtcea' : base ++ 'Prom_to_ea'],
Er kocht Wasser' : ['Caus' : base ++ 'Caus'],

'"Er kocht das Wasser weg' :
['TVsmallclAdvP' : base ++ 'Caus' ++ 'TV_smallcl AdvP'],

'das Wasser wegkochen'
['TVsmallclAdvP_IncorpAdv'
base ++ 'Caus' ++ 'TV_smallcl AdvP' ++
'Incorp_ Adv'(412, 413}],
'wurde weggekocht das Wasser' :
('TVsmallclAdvP_IncorpAdv_Pass'
base ++ 'Caus' ++ 'TV smallcl _AdvP' ++
'Incorp Adv'({_ 547, 548} ++ 'Pass'],
'Er kocht die Eier hart‘
['TVsmallclAP' : base ++ 'Caus' ++ 'TV smallcl AP'],
'die Eier hartkochen' - -
['TVsmallclAP_IncorpA' 5
base ++ 'Caus' ++ 'TV_smallcl AP' ++ 'Incorp A'(982, 983)],
'wurden hartgekocht die Eier!' - B
['"TVsmallclAP_IncorpA Pass' :
base ++ 'Caus' ++ 'TV_smallcl_ AP' ++ 'Incorp_A'(_1106, 1107) ++

'Pass'],
'Er kocht die Kartoffel zu Mus'
('TVsmallclPP' : base ++ 'Caus' ++ 'TV_smallcl_PP'],

'wurden die Kartoffel zu Mus gekocht !
['TYsmallclPP_Pass'
base ++ 'Caus" ++ 'TV_smallcl PP' ++ 'Pass'],
'Es kocht sich gut hier': o
['Caus_Dodel IVmiddle': base ++ 'Caus' ++ 'IV middle'],
'Er kocht die Sachen aus' -
["IVsmallclAdvP'
base ++ 'Caus' ++ 'DO del' ++ 'IV smallcl AdvP'],
'die Sachen auskochen' : - -
("IVsmallclAdvP IncorpAdv'
base ++ 'Caus' ++ 'DO_del' ++ 'IV smallcl AdvP' ++
"Incorp Adv'(1594, 1595)], - -
' wurden ausgekocht die Sachen'
('IVsmallclAdvP_IncorpAdv_Pass'
base ++ 'Caus' ++ 'DO del' ++ 'Iv smallcl AdvP' ++
'Incorp Adv'(1732, 1733) ++ 'Pass'],
"Er kocht den Kessel schwarz'
['IVsmallclAP' : base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP'],
'den Kessel schwarzkochen' -
('IVsmallclAP_IncorpA'
base ++ 'Caus' ++ 'DO del' ++ 'IV smallcl AP' ++
'Incorp A'(2184, 2185)], - -
'"wurde schwarzgekocht “der Kessel'
['IVsmallclAP_IncorpA Pass'
base ++ 'Caus' ++ 'DO_del' ++ 'IV smallcl AP' ++
"Incorp_A'(2312, 2313) ++ 'Pass'],
'"Er kocht sich mide’
['IVsmallclAP_DOrefl'
base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl AP' ++ 'DO refl'],
'Er kocht ein Loch in den Kessel' : - B
('IVsmallc)PP' : base ++ 'Caus' ++ 'DO del' ++ 'IV smallcl PP'],
'wurde gekocht ein Loch in den Kessel' : - -
('IvVsmallclPP_Pass'
base ++ 'Caus' ++ 'DO_del' ++ 'IV_smallcl PP' ++ 'Pass']),
"TEr kocht sich in gute Laune’
['IVsmallclPP_DOrefl!'
base +4+ YCaps' ++ DO del! ++ 'IV :smallcl PP' =+ D7 refl'],
'Das Wasser kocht weg' -
('TVsmallclAdvP_Promtoea'
base ++ 'TV_ smallcl AdvP' ++ 'Prom to ea'],
'Das Wasser ist weggekocht' -7
('TVsmallclAdvP_IncorpAdv_Promtoea'
base ++ 'TV_smallcl_AdvP' ++ 'Incorp Adv'(_ 2555, 2556) ++

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 4

'Prom_to_ea'],
'Die Kartoffeln kochen trocken'!

('TVsmallclAP_Promtoea' : base ++ 'TV_smallcl AP' ++ 'Prom to ea'l],
'Die Kartoffeln kochen zu Brei' : -
['TVsmallclPP_Promtoea' : base ++ 'TV_smallcl PP' ++ 'Prom to ea'],
'Er erhebt sich' - -
['Caus_DOrefl' : base ++ 'Caus' ++ 'DO_refl'],
'Eine Stimme erhebt sich'
['Exgrefl_ Promtoea' : base ++ 'Erg refl' ++ 'Prom to ea'],
'"Es erhebt sich eine Stimme’ -7
['"Ergrefl detins' : base ++ 'Erg refl' ++ det_ins]]).
xtemplate (3, exp_iv,"
['"Exr friert' : [basic : base],
'Er friert zu Tode® : ['SuPredAdPP' : base ++ 'SuPredaAd PP']]).
xtemplate (4, tv,
["Exr 1Bt das Essen : [basic : base],
'wird gegessen das Essen' : ['Pass' : base ++ 'Pass'],
'Er kauft ihr einen Hut®
['FreeIOins' : base ++ 'Free IO ins'],
'Exr kauft sich einen Hut'
['IOrefl' : base ++ 'Free IO _ins' ++ 'IO refl'],
'wurde ihr ein Hut gekauft’ -
['FreeIOins_Pass' : base ++ 'Free IO ins' ++ 'Pass'],

'Biicher kaufen sich leicht':
['TVmiddle': base ++ 'TV_middle'],

"Er wascht sich'-: ['DOrefl' : base ++ 'DO_refl'],
'Er 1Bt das Essen auf'
['TVsmallclAdvP' : base ++ 'TV_smallcl AdvP'],

'das Essen aufessen'
('TVsmallclAdvP_IncorpAdv'
base ++ 'TV_smallcl_AdvP' ++ 'Incorp Adv'(449, 450)],
'wird aufgegessen' o - -

('TvsmallclAdvP_Pass' : base ++ 'TV_smallcl AdvP' ++'Incorp Adv' ()++ 'Pass'],
'"Er wirft sich hinab' -
('TvsmallclAdvP_DOrefl' : base ++ 'TV_smallcl AdvP' ++ 'DO refl'),

'Exr wdscht die Kleider sauber' : ['TVsrallclAP' : base ++ 'TV smallcl AP'],
'"Er widscht sich sauber'’ - -
('TvsmallclAP_DOrefl' : base ++ 'TV_smallcl AP' ++ 'DO refl'],

'die Kleider sauberwaschen'
['TVsmallclAP_Incorph'
base ++ 'TV smallcl AP' ++ '"Incorp_A'(_1015, 1016)],
'werden die Kleider saubergewaschen’
['TVsmallclAP_IncorpA Pass'
base ++ 'TV_smallcl AP' ++ 'Incorp_A'(_1135, 1136) ++ 'Pass'],
'Er fithrt Energie zum Kérper'
['TVsmallclPP' : base ++ 'TV_smallcl PP'],
'wird Energie dem Koérper zugefilhrt'
('TVsmallclPP_Pass' : base ++ 'TV_smallcl_PP' ++'Incorp Adv'(X,Y)++ 'Pass’'],
'dem Kdper Energile zufiihren' -
['TVsmallclPP_IncorpP'
base ++ 'TV_smallcl_PP' ++ 'Incorp P'(1405, 1406)],
'Er fiihrt sich Energie zu' -7 -
('TVsmallclPP_IncorpP DOrefl’
base ++ 'TV_smallcl PP' ++ 'DO refl'],
'sich Energie zufiihren':
['TVsmallclPP_IncorpP_ DOrefl'
base ++ 'TV_smallcl PP' ++ 'Incorp P'(_1653, 1654) ++ 'DO refl'],

'"Er iBft' : ['DOdel' : base ++ 'DO_del™], _

'wurde gegessen' : ['DOdel_Pass' : base ++ 'DO_del' ++ 'Pass’'],
'"Er trinkt die Sorgen hinweg!'

('IVsmallclAdvP' : base ++ 'DO_del' ++ 'IV_smallcl AdvP'],

'die Sorgen hinwegtrinken'
['IVsmallclAdvP_IncorpAdv'
base ++ "DO_del' ++ 'IV_smallcl AdvP' ++
'Incorp Adv'(2118, 2119)],
'wurden hinweggetrunken'

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences

['IVsmallclAdvP_ IncorpAdv_Pass'
base ++ 'DO_del' ++ 'IV_smallcl AdvP' ++
'Incorp_ Adv'(2253, 2254) ++ 'Pass'},
'er trinkt sich weg'’
('IVsmallclAdvP DOrefl' :
base ++ 'DO_del' ++ 'IV_smallcl AdvP' ++ 'DO _refl'],
'Er iBt den Teller leer'
['IVsmallclAP' : base ++ 'DO_del' ++ 'IV smallcl AP'},
'den Teller leeressen’ - -
[fIVsmallclAP_IncorpA’' :
base ++ 'DO_del’' ++ 'IV_smallcl AP' ++
'Incorp_ A'(_2708, 2709}],
'wird der Teller leergegessen'
['IVsmallclAP IncdrpA Pass!
base ++ 'DO_del' ++ 'IV smallcl AP' ++
'Incorp_A'(_2832, 2833) ++ 'pPass'],
'Exr iBt sich satt’
['IVsmallclAp DOrefl'
base ++ 'DO del' ++ 'IV_smallcl AP' ++ 'DO_refl'],
'Er trinkt Tom unter den Tisch' -
[('IVsmallclPP' : base ++ 'DO _del' ++ 'IV_smallcl PP'],
'wird unter den Tisch getrunken' -
('IVsmallclPP_Pass'
base ++ 'DO_del' ++ 'IV_smallcl PP' ++ 'Pass'],
'Er ift sich in gute Laune'
["IysmallclPP_DOrefl'
base ++ 'DO_del' ++ 'IV_smallcl PP' ++ 'DO_refl'],
'Exr 1Bt vom Brot!'

['DOtoPP' : base ++ 'DO_to_ PP'({ 3008)],
'wird gegessen vom Brot'
('DCtoPP_Pass' : base ++ 'DO_to PP'(_3079) ++ 'Pass'],
'Er trinkt den Kaffee heiB'
('ObjQual' : base ++ 'ObjQual'(3160)),
'wird getrunken der Kaffee heiB'
['ObjQual_Pass' : base ++ 'ObjQual'(3258) ++ 'Pass'],

'"Er sagt etwas zu Tom'
(*PPad' : base ++ 'PP_ad'(3360, 3361)];
'wird gesagt etwas zu Tom' B o
('PPad_Pass' : base ++ 'PP_ad'(_ 3474, 3475) ++ 'Pass'],
'Er sagt etwas zu Tom iUber Marit'
['PPad _PPad' : ;
base ++ 'PP_ad'(_ 3684, 3685) ++ 'PP_ad'(_3584, 3585)],
'Er fillt den Eimer mit Wasser!'
['PPad_locadalt'
base ++ 'PP_ad' (_4465,_ 4466) ++ load alt],
'wird gefiillt der Eimer mit Wasser' o
['PPad_loadalt Pass'
base ++ 'PP_ad'(_4582, 4583) ++ load_alt ++ 'Pass'],
'Er fi1llt sich mit Gin'
['PPad loadalt DOrefl’
base ++ 'PP_ad'(4699, 4700) ++ load_alt ++ 'DO refl'j},
'"Er wirft Tom ein Buch an den Kopf' -
['PartWhtoIO'
base ++ 'PP_ad'(_4813,_4814) ++ 'Part Wh L o IO,
'wurden geworfen Tom ein Buch an den Kopf'
['PartWhtoIO_ Pass' :
base ++ 'PP_ad'(_4930,_4931) ++ 'Part_Wh_to IO' ++ 'Pass'],
'er wirft sich ein Buch an den Kopf'
['PartWhtoIO IOrefl' :
base ++ 'PP _ad'(_5047,_5048) ++ 'Part_Wh_to IO' ++ 'IO refl'),
'er wirft sich Tom an den Hals!' -
['PartWhtoIO DOrefl'
base ++ ’PP _ad'{ 5164, 5165) ++ 'Part_Wh_to IO' ++ 'DO refl'),

'Er sieht einen Elch kommen' : ['"AcI' : base ++ 'AcI'],
'wurde ein Elch kommen gesehen'
['AcI_Pass' : base ++ 'AcI' ++ 'Pass'],

'Er sah sich fallen'
['AcI_DOrefl' : base ++ 'AcI' ++ 'DO_refl'],

Page 5

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 6

'"Er sagt daBS' : [daBS : base ++ daBS(_5333)],
'Er sagte Maria daRS'
[daBS_FreeIOins : base ++ dafS(_5467) ++ 'Free_ IO_ins'],
'wurde gesagt Maria daBsS'
[daBS_FreeIOQins Pass
base ++ dafS(5604) ++ 'Free IO ins' ++ 'Pass'],
'wurde gesagt daBS'
[dalS_Pass : base ++ daBS(_5737) ++ 'Pass'],
'Er sagt zu Tom daRS'
[daBS_PPad
base ++ daBS(5967) ++ 'PP ad'(5855, 5856)],
'wurde gesagt zu Tom daBS'’ - - -
[daS_PPad Pass :
base ++ daBS{(_6201) ++ 'PP_ad'(_6089, 6090) ++ 'Pass'],
'Er sagt weshalb' * (whS : base ++ whS(_6335)],
'Er sagte Marla weshalb’
[whS_FreelIOins : base ++ whS(6482) ++ 'Free IO _ins'],
'wurde gesagt Maria weshalb'’ !
[(whS_FreelOins_Pass
base ++ whS(_6633) ++ 'Free IO ins' ++ 'Pass'],
'wurde gesagt weshalb' :
(whS Pass : base ++ whS{({ 6781) ++ 'Pass'],
'"Er sagt zu Tom weshalb'
[whS_PPad :
base ++ whS(_7025) ++ 'PP_ad’'(_6909,_ 6910)],
'wurde gesagt zu Tom weshalb!'
(whS_PPad_Pass
base ++ whS(_1272) ++ 'PpP_ad' (_7156,_7157) ++ 'Pass'],
'wurde versucht zu'
(zu_inf Pass : base ++ zu inf ++ 'Pass']]).

xtemplate (5, th_tv,
['L&éschpapier absorblert Tinte' : [basic : base],
'wird absorblert Tinte' : ['Pass' : base ++ 'Pass']]).

xtemplate (6, exp_ tv,

['Er mag Kaffee' : [basic : base],
'"Exr mag selnen Kaffee schwarz'
('Depict' : bas® ++ 'Depict'(46)]]).
xtemplate (7,ditv,
['Er gibt Tom Geld' : [basic : basel,
'wurde Tom Geld gegeben' : ['Pass' : base ++ 'Pass'],
'Exr gibt Geld! : ['I0del’! - base ++ 'I0 dell];
'wurde Geld gegeben' :
('I0odel_Pass' ; base ++ 'IO del' ++ 'Pass'],

'"Er gibt Geld an die Armen'
['IOdel PPad'
base ++ 'IO del' ++ 'PP_ad’'(_98, 99)],
'wurde Geld an die Armen gegeben'
['IOdel PPad Pass' :
base ++ 'IO0 dpl' ++ 'PP_ad'(_215, 216) ++ 'Pass'],
'Er gibt sich ganz'
['IO0del DOrefl' : base ++ 'IO del' ++ 'DO refl'],
"Er gibt"' : ['IOdel DOdel' : base ++ 'IO del' ++ 'DO del'],
'wurde gegeben' -
['IOdel DOdel Pass'
base ++ 'IO del' ++ 'DO_del' ++ 'Pass'],
'Exr gibt den Armen'
['I0del DOdel_PPad'
base ++ 'IO _del' ++ 'DO_del’' ++ 'PP_ad'(_ 383, 384)],
'Er gibt die Biichse voll' -
["IVsmallclAP' : base ++ 'IO del' ++ 'DO_del' ++ 'IV_smallcl AP']},
'wurde die Biichse vollgegeben' o
('IVsmallclAP IncorpA Pass'
base ++ "IO_del' ++ 'DO_del' ++ 'IV_smallcl_ AP' ++'Incorp A'()++ 'Pass'],
'Er gibt die Familie aus dem Haus'
['IVsmallclPP' : base ++ 'IQO_del' ++ 'DO_del' ++ 'IV_smallcl PP'],

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences

'wurde die Famille aus dem Haus gegeben'
['IVsmallclPP Pass'

base ++ '"IO_del' ++ 'DO_del' ++ 'IV smallcl PP' ++ 'Pass'],

'Er gibt den Plan auf’
['IVsmallclAdvP'
base ++ 'IO_del' ++ 'DO_del' ++ 'IV_smallcl_AdvP'],
'den Plan aufgeben’
('IVsmallclAdvP_IncorpAdv'

base ++ 'IO_del' ++ 'DO_del' ++ 'IV_smallcl AdvP' ++'Incorp Adv' ()],

'wurde der Plan aufgegeben’

('IVsmallclAdvP_IncorpAdv_Pass'

base ++ 'IO_del' ++ 'DO_del' ++ 'IV_smallcl AdvP!'
++'Incorp Adv' () ++'Pass'],,
'"Er gibt sich auf',:
["IVsmallclAdvP_DOrefl':
base ++ 'IC_del' ++ 'DO del' ++ 'IV_smallcl AdvP'
++'DO_refl'T, N
['sich aufgeben'
base ++ 'IO_del' ++ 'DO _del' ++ 'IV_smallcl Advp'
++'Incorp_ Adv' () ++'DO_refl'],
'Er gibt auf'
['IO0del_DOdel_ SuPredAdAdvp!
base ++ 'IO_del' ++ 'DO_del' ++ 'SuPredAd AdvP'],
'Exr gibt Tom einen StoB in den Riicken'

('PartWHtoIO' : base ++ 'IO del!' ++ ‘Part Wh to I0'],
'wurde Tom ein StoB in den Riicken gegeben'

['PartWHtoIO Pass'

base ++ 'IO del' ++ 'Part_Wh_to IO' ++ 'Pass'],
'Er gibt das Geld weg’

('TVsmallclAdvP' : base ++ 'IO del' ++ 'TV_smallcl AdvP'],
'das Geld weggeben' -
["TVsmallclAdvp'

base ++ 'IO del' ++ 'TV
'wurde das Geld weggegeben™
['TVsmallclAdvP_IncorpAdv Pass'

smallcl_ AdvP' ++'Incorp Adv' ()],

base ++ 'IO del' ++ "IV _smallcl AdvP' ++'Incorp Adv' ()++ 'Pass'],

'"Exr gibt das Geld aus dem Lande' o
['TVsmallclPP' : base ++ 'IO del' ++ 'TV_smallcl PP'],
'wurde das Gold aus dem Lande gegeben' -
['TVsmallclPP_Pass'
base ++ 'IO_del' ++ 'TV_smallcl PP' +% 'Pass'], '
'‘Per gir seg god tid' : ['TOrefl' : base ++ 'IO refl']]).

xtemplate (8, refl,
['Exr schdmt sich' : [basic : base]),
'Er schamt sich weged seines Autos'
('PPad' : base ++ 'PP_ad'(_54, 55)]]).

xtemplate (9, psych,

['langweilt ihn das Buch' : [basic : base],
‘Das Buch langweilt ihn' : ['Promtoea' : base ++ 'Prom to ea'],
'Er langweilt sich' : o
['DOdel ExpMvt' : base ++ 'DO del' ++ '"ExpMvt'],
'Er interessiert sich fiir das Buch'
['ExpMvt_DOtoPP' : base ++ 'ExpMvt' ++ 'DO to priciil (e eT L I
'Er langweilt Tom mit Gerede' o -
['DOtoPP_Caus' : baSe ++ 'DO_to_PP'(_151) ++ 'Caus'],
'Er langweilt Tom' - B
['DOdel _Caus' : base ++ 'DO _del' ++ 'Caus'],
'Er ist gelanweilt' -
['DOdel ExpAdj' : base ++ 'DO_del' ++ 'ExpAdj'],
'Er ist interessiert am Buch'
('ExpAdj DOtoPP' : base ++ 'ExpAdj' ++ 'DO_to PP'(272)],
'Das Buch begeistert' -
('Expdel Promtoea' : base ++ 'Exp_del' ++ 'Prom to ea'),
"interessiert Tom daBS : [daRS : base ++ dafs(393)7,

'daBS interessiert Tom'
[daBS_Antiexp : base ++ dasS(_526) ++ YAnti exp'),

Page

7

63-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page

'"Er drgert sich dariber dafs'
[daBsS_ExpdMvt DOtoPP
base ++ daBS(_663) ++ 'ExpMvt' ++ 'DO _to PP'],
‘interessiert Tom whS' : [whS : base ++ whS{(931)],
'whS interessiert Tom' :
(whS_Antiexp : base ++ whS(_1078) ++ 'Anti exp'],
'Er interessierte seqg dafiir whS'
[whS_ExpMvt DOtoPP
base ++ whS(1229) ++ 'ExpMvt' ++ 'DO_to_PP'],
"interessiert Tcm zu' : [zu_inf : base ++ zu_inf],
'zu interessiert Tom'
[zu_inf Antiexp : base ++ zu inf ++ 'Anti exp'],
'"Er interessiert sich dafiir zu'
[zu_inf ExpMvt_ DOtoPP
base ++ zu_inf ++ 'ExpMvt' ++ ‘DO kG PPY]])s

xtemplate (10, psych2,
['geliistet ihn nach Abenteuern' : [basic : base]
'es gelistet ihn nach Abenteuern' : [esins :base ++ esins]]).

xtemplate (11, raisvl,
('zeigt sich daf Tom kompetent ist' : (basic : basel,
'es zeigte sich daB Tom' : [esins : base ++ es ins],
'"Jon erwelst sich krank zu sein' -
[daBStoClinf SubjRails
base ++ daBs to Cl_1inf(_227) ++ 'SubjRais'(85)],
'Jon” erwelst sich krank'
(dafStoClinf_ SubjRails_zu_inftopredicAP
base ++ daBS to Cl inf(_526) ++ 'SubjRais'(_384) ++
zu_inf toﬁpredic AP]). \

xtemplate (12, raisv2,

['kommt mir vor als ob' : [basic : base],

'es kommt mir vor als ob ' : [esins : base ++ es ins),
'er kommt mir vor als ob' : -
['RalsCop' : base ++ 'RaisCop'],

'er kommt mir krank vor'
['PropcompltoSC_SubjRais’ .
base ++ 'Prop_compl_to_SC'(_242) ++ 'SubjRais'(99)]]).

xtemplate (13, raisv3,

['schelnt mir daf Tom krank ist' : [basic : base],

'es scheint mir daB Tom krank ist' : [esins : base ++ es ins],

'es scheint dap' : -
['IOdel_detins' : base ++ 'IO del' ++ es_ins],

'es scheint mir als ob '
[daBStopropcompl_esins
base ++ daBS_to_prop_compl ++ es o LS
'es scheint als ob'
['IOdel daRStopropcompl detins'
base ++ 'IO del' ++ daBS _to_prop_ compl ++ es_ins],
"Tom scheint mir als ob er krank ist??' :
[atStopropcompl RalsCopy
base ++ daRS_to_prop_ compl ++ 'RaisCop'],
'Tom scheint als ob er
('IOdel_dahStopropcompl_ Raiscopy’
base ++ 'I0 _del' ++ dafs to_prop compl ++ 'RaisCop'],
'"Tom scheint mir krank zu sein :
[atStoClinf SubjRais :
base ++ daBS_to_Cl_inf(_319) ++ 'SubjRais'(177)],.
"Tom scheint krank zu sein’ -
['I0del dafStoClinf SubjRais'
base ++ 'I0 del' ++ daBS_to_Cl_inf(_615) ++
'SubjRais' (_473)],
'Er scheint mir krank' :
[daBStoClinf _SubjRals z inftopredicAP
base ++ dafBS_to Cl_inf(917) ++ 'SubjRais!' (_775) ++
zu_inf to predic AP],

8

1

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 9

'Er scheint krank’
['IO0del _daRstoClinf_ SubjRais zuinftopredicAp'
base ++ 'IO_del' ++ daBS_to_Cl_inf(_1216) ++

'SubjRais' (_1074) ++ zu_inf to_predic AP]]).

*template (14, depict,
["Er stellt sich Tom vor' : ([basic : base],
'Er stellt sich vor dan' :
(daBs : base ++ daBS(_66)],
'"Er stellt sich Tom gesund vor!
[daBRStoSC : base ++ daBS(_199) ++ dafS_to_SC]]).

xtemplate (15, smallcl,

['man sieht ihn fiir‘einen Idioten an' : [basic : base],
'wird fir ein Idiot gehalten Tom ' : ['Pass' : base ++ 'Pass'],
'er hdlt sich fir ein Genie' : ['DOrefl' : base ++ 'DO-refl'],

'man sieht ihn als schuldig an'

[predicals : base ++ predic_fiir to_predic als],

'wird als schuldig angesehen Tom'

[predicals_Pass : base ++ predic als ++ 'Pass')]

‘er sieht sich als schuldig an' : ['predicals DOrefl' : base ++
'predic_fir_to_predic_als' ++ 'DO-refl')]).

xtemplate (16,iv_loc,

['Exr wohnt in der Stadt' : [basic : base],
'wird gewohnt in dieser Hiitte' :[base ++ 'Pass'],
'es ‘wohnt sich gut in dieser Hiitte':
('IVmiddle': base ++ 'IV middle'])).

xtemplate (17, refl loc, |
{"Er hdlt sich hier auf' : [basic : base])).

xtemplate (18, tv_loc,
['Exr setzt die Blumen auf den Tisch' : (basic : base],
'wurde die Vase auf den Tisch gesetzt' : ['Pass' : base ++ 'Pass']]).

xtemplate (19, ind arg,
['Selne Ansicht beruht auf einem Irrtum' :-[basic : basel]]).

xtemplate (20,1ind_arg_refl,

['Er vergewissert sich seines Daseins' : [basic : base],
"Er vergewissert sich dafBS': ['daBS' :base ++ 'dans' ()],
'Er vergewissert sich obS' : ['obS' : base ++ 'obST()11]).

xtemplate (21, weather,

['schneit' : [basic : base],

'es schnelt' : [esins : base ++ es_1ins],

'es schneit dicke Flocken’ ;
['InhObj_esins' : base ++ 'InhObj' ++ es ins]])).

xtemplate (22, measure,

['der Stein wiegt 3 kg' : [basic : base]]).
xtemplate (23, repr,
['das Bild stellt Tom dar' : ([basic : base],
'Tom darstellen’ : ['IncorpAdv': base ++ Incorp Adv(X,Y)]).
xtemplate (24, appellatl,
('Er ernennt ihn zum Chef' : ([basic : base],
'wurde Tom zum Chéf ernannt' : ['Pass' : base ++ 'Pass'],
'Tom ernennt sich zum Chef' : ['DOrefl' : base ++ 'DO_refl']]).

xtemplate (25, appellat2,

['Er nennt Tom ein Genie' : [basic : base),
'wird genannt Tom ein Genie' : ['Pass' : base ++ 'Pass']),
'"Er nennt sich ein Genie' : ['DO refl' : base ++ 'DO_refl']]).

rtemplate (26, refl manner,

03-10-1989 10:03 HD 40 IIcx:Derivation:ger-intralex-D-sequences Page 10

('Exr benimmt sich vorbildlich' : [basic : base]
'Er benimmt sich wie ein Idiot': ['Predicwie': base ++ 'Predic_wie')])).

xtemplate (27, erg_ditv,

['erwartet Tem ein Ungliick' : [basic : base],
'es erwartet Tom eine Katastrophe' : [esins : base ++ es ins],
'eine Katastrophe erwartet Tom' : ['Promtoea' : base ++ 'Prom to ea']l).

xtemplate (28, dat_verb,
('er winkt den Leuten' : [basic : base],
'wurde gewunken den Leuten' :'Pass' : base ++ 'Pass']]).

xtemplate (29, double_acc,

['er lehrt ihn das Schwimmen' : [basic : base],

'wurde gelehrt ihn das Schwimmen' :'Pass' : base ++ 'Pass')

'er lehrte den Kindern das Schwimmen':['Datalt': base ++ 'Dat alt']

"ihnen wurde das Schwimmen gelehrt': 'Datalt Pass': basé ++ 'Dat alt'++ 'Pass’

'er lehrte ihn die Maschine zu bedienen':['zuinf': base ++ zu inf]]).

xtemplate (30, erg exp,
['passiert mir ein Ungliick': (basic : base],
'eln Ungliick passiert': [IOdel!':base ++ 'IO _del']]).

App.

da

Basic Templates

(1)

(2)

3)

A

4)

(5)

(6)

(8)

(9)

intransitive verb
SAF: <ag,np,ea>
statement: iv

[Ex. Jan danst]
‘John dances'

ergative

SAF: <th,np,gov>
Statement: erg
[Ex. _rollen stenen]
'roll stones'

experiencer intransitive verb
SAF: <exp,np,ea>,<scsu,np,gov>,<prd,X,predic>
Statement: exp_iv(arg)
where arg is AP (default) or AdvP
[Ex. Jan is het gezeur beu]
‘John is tired of harping'

transitive verb

SAF: <ag,np,ea>,<th,np,gov>
Statement: tv

[Ex. Jan gooit een steen]

'‘John throws a stone'

"theme transitive verb

SAF: <th,np,ea>,<th,np,gov>
Statement: th_tv

[Ex. papier absorbeert water]
‘paper absorbs water'

experiencer transitive verb
SAF: <exp,np,ea>,<th,np,gov>
Statement: exp_tv

[Ex. Jan haat huiswerk]

‘John hates homework'

ditransitive verb

SAF: <ag,np,ea>,<ben,np,io>,<th,np,gov>
Statement: ditv

[Ex. Jan geeft Piet een boek]

‘John givés Peter a book'

reflexive verb

SAF: <exp,np,ea>,<norole,zich,refl>
Statement: refl

[Jan schaamt zich]

'John shames himself

psych verb

SAF: <exp,np,io>,<th,np,gov>
Statement: psych

[Ex. _irriteren Jan de kat]
'_irritate John the cat’

Troll: basic templates of Dutch

APF_ 4

Troll: basic templates of Dutch

(10) raising verb 1

(11)

(12)

SAF: <th,dat_S,gov>
Statement: raisverbl

[Ex. _blijken dat Jan ziek is]
'_appears John to be ill'

raising verb 2

SAF: <exp,np,io>,<th,dat_§,gov>
Statement: raisv3

[Ex. _lijken mij dat Jan ziek is]
'"_seem to me that John is ill'

raising verb 3
SAF: <th,dat_S function>
Statement: raisv3(arg)
where arg is gov (default), pgov or a preposition
[Ex. _lijken op dat Jan ziek is]

"_look like John to be ill'

(13) depictive

SAF: <ag,np,ea>,<norole,zich,refl>,<th,np,gov>
Statement depict

[Ex. Jan stelt zich Piet voor]

‘John imagines (himself) Peter'

(14) small clause

SAF: <ag,np,ca>,<scsu,np,gov>,<prd, X,funcnon>
Statement: smcl(argl arg2)
where argl is ap (dcfault) or np, and arg2 is pgov or a preposition
[Ex. Jan beschouwt Piet als ziek]
‘John considers Peter as ill'

(15) intransitive verb locative

(16)

SAF: <X,np,ca>,<loc,Y,adv>
Statement: iv _loc(argl,arg2)
where argl is ag (default) or th, and arg2 is pp (default) or advp
[Ex. Jan woont in Noorwegen]
‘John lives in Norway'

reflexive verb locative
SAF: <X,np,ea>,<norole,zich,refl> <loc,Y,adv>
Statement: refl_loc(argl,arg2)
where argl is ag (default) or th, and arg?2 is pp (default) or advp
[Ex. Jan houdt zich op in Noorwegen)
‘John stays in Norway'

(17) transitive verb locative

SAF: <ag,np,ea>,<th,np,gov>,<loc,np function>
Statement: tv_loc(arg)

where arg is pgov (default) or a preposition
[Ex. Jan zet de vaas op de tafel]
‘John puts the vase on the table'

Troll: basic templates of Dutch

(18) indirect argument

(19)

(20)

(21)

(22)

(23)

SAF: <X,np,ea>,<th,npfunction>

Statement: ind_arg(argl,arg2)
where argl is ag (default), exp or th, and arg?2 is pgov (default) ora -
preposition _

[Ex. Jan verlangt naar haar]

‘John i1s longing for her'

di-indirect argument
SAF: <ag,np,ea>,<th,np funcrion>,<ben,np function>
Statement: di_ind_arg(argl,arg2)

where argl is pgov or gov, and arg? is pgov or gov
[Ex. Jan dringt bij Marie op iets aan]
‘John presses Mary for something'

indirect argument reflexive
SAF: <ag,np,ea>,<norole,zich,refl>,<th,np function>
Statement: ind_arg_refl(arg)

where arg is pgov (default) or a preposition
{Ex. Jan verdiept zich in de krant]
'John pores over the newspaper'

weather verb
SAF: @

Statement: weather
[Ex. _regenen]

' rain'

measure verb

SAF: <th,np,ea>,<measure,np,predic>
Statement: measure

[Ex. de stenen wegen 3 kg]

'the stones weigh 3 kg'

representative

SAF: <th,np,ea>,<repr,np,,gov>
Statement: repr

[Ex. het schilderij stelt een vrouw voor'
'the painting represents a woman'

(24) appellative 1

SAF: <ag,np,ea>,<scsu,np,gov>,<prd,np function>
Statement: appellatl(arg)

where arg is pgov (default) or a preposition
[Ex. Jan benoemt Piet tot koning]
‘John nominates Peter king'

(25) appellative 2

SAF: <ag,np,ea>,<scsu,np,gov>,<prd,Y,predic>
Statement: appellat2(arg)
where arg is ap or np
[Ex. Jan noemt Piet Y]
‘John calls Peter Y'

Troll: basic templates of Dutch

(26) reflexive verb manner
SAF: <X,np,ea>,<norole,zich,refl>,<manner,Y,adv>
Statement: refl_manner(argl,arg2)
where argl is ag (default) or th, and arg2 is advp (default) or pp
[Ex. Jan gedraagt zich goed]
‘John behaves himself well’

(27) ergative ditransitive
SAF: <ben,np,io>,<th,np,gov>
Statement: erg_ditv
[Ex. _wachten Jan een ongeluk]
'_wait John an accident'

(28) benefactive transitive
SAF: <ag,np,ea>,<ben,np,gov>
Statement: ben_tv
[Ex. Jan betaalt haar]
‘John pays her'

(29) copula
SAF: <scsu,np,gov>,<prd,Y,predic>
Statement: cop(arg)
where arg is ap (default), np or pp
[Ex. _zijn_Jan_ziek])
'_be John ill'

(30a) latenl
SAF: <ag,np,ea>,<ben,np,io>,<th,Inf_compl,gov>
statement: latenl
[Ex. Jan laat Piet de eendjes voeren]
‘John allows Peter to feed the ducks'

(30b) laten2
SAF: <X,np,ea>,<scsu,np,gov>,<prd,Y,predic>
statement: laten2(argl,arg2)
where argl is ag (default) or th, and arg2 is Inf-compl (default), ap or pp
[Ex. Jan laat mij koud]
‘John leaves me cold’

(30c) laten3
SAF: <th,Inf_compl,gov>
statement: laten3
[Ex. _laten cen oplossing vinden]
‘let a solution to be found'

App. b

Troll: derivational rules of Dutch Vs

The derivational rules!

DO(direct object)-deletion DO_del
Object-to-PP DO_to_PP
I0-deletion I0O_del

IV-SmallCIause-formafion AP / PP/ AdQP IV_smcl_*2
TV-SmallClause-formation AP / PP / AdvP TV_smcl *
Depictive small clause Depict

Accusative with infinitive Acl

Object Qualification ObjQual

Cognate Object CogObj

load-alternation load_ait

Part-whole-to-DO Part_Wh_to_DO

Part-whole-to-IO Part_Wh_to_IO

Adv-to-DO Adv_to_DO

Causativization with non-ea Caus

Causativization with ea Ea_caus '
DO-reflexivization DO_refl

I0-reflexivization 10_refl

Passive Pass3

Promotion to EA Prom_to_ea

Subject-predicate adjunction AP /PP / AdvP SuPred_ad *

PP-adjunction PP_ad

Incorporation A / P4/ Adv Incorp_*

IThis list contains the derivational rules that are used to describe derivations of Dutch verbs. The first
part of this list is an enumeration of the rules that are overtaken from the derivational rules for Norwegian
and German. The last part consists of new rules. I'll give an informal description of the syntactic change
they effectuate, and where possible the same is done for the change in the semantics.

2The "*' can be substituted by AP, AdvP or PP.

3The Passive rule consists of two types: Short Passive and Long Passive. In derivations of the verbs
these differentiations are both denominated by 'Pass’. At the end of this list is stated under which
circumstances the different types occur.

4 Only postpositions incorporate in Dutch.

Troll: derivatonal rules of Dutch Vs

Substitution NP-datS NP _to_datS!

Substitution NP-te-Inf NP_to_te-Inf

Substitution NP-wS NP_to_wS

Substitution NP-ofS NP_to_ofS

Subject Raising SubjRais

Substitution of te-Inf with predic-AP th-Inf_to_prcd_AP
Substitution of datS with clausal infinitive datS_to_CL_inf
Anti-extraposition Anti_exp

Experiencer movement ExpMvt

Experiencer adjectival construction ExpAdj

Ergative zich insertion Erg_refl

Indirect object insertion? 10_ins

Inherent object InhObj

Existential ¢r insertion
Syntactic change;
If there is an indefinite ea, then:
-move this ea to internal argument position, insert expletive gr in the empty ea
position.
Elsc, if there's no ea and there's an indefinite direct object, then:
-insert expletive er in the empty ea position.
Semantic change:
Adds an 'observational’ aspect to the meaning of the event or state that is expressed by
the verb and its complements.
Rule statement; Exist_er_ins
[Ex. iemand zingt -> er zingt iemand]

VP-Qualification
Syntactic change:
If there's an agentive ea:
-delete the ea. Add an advP that qualifies the VP,

Comment:
The agent probably becomes an implicit argument.
Rule statement: VP_Qual

[Ex. zitten -> zitten lekker]

het insertion
Svyntactic change:

I A complement clause (sentence or infinitive) is always extraposed to the right in Dutch. Extraposition
can be adjunction to the top S node or adjunction to VP. In main clauses extraposition remains hidden for”
the eye in most cases, because of V2. But in subordinate clauses the phenomenon shows up, since in
subordinate clauses the verb is basically in final position and only extraposed clausal complements can
follow the verb. For consistency extraposition must apply both in main clauses and subordinate clauses.
A possibility would be to incorporate the extraposition rule in every 'Substitution NP-Clause' rule.

2This rule is not very productive in Dutch, It only occurs in archaic sounding expressions,

Troll: derivational rules of Dutch Vs

If there is no ea or a small clause subject is empty, then:
-insert het in ea position.

Rule statement: het_ins

[Ex. _regent -> het regent]

Middle alternation
Syntactic change:
If the VP is qualified by an advP and th~ ea position is empty, then:
-if there's a direct object, move the direct object to the ea position.
-if there's a PP-adjunct, delete the preposition and move the NP to ea position.
Rule statement: Middle_alt
[Ex. _zit lekker op deze stoel -> deze stoel zit lekker]

Swarm alternation
Syntactic change:
If the meaning of the SAF of an intransitive verb implies that there must be a 'swarm' of
objects, denoted by the ea, then:
-PP-adjungate the ea to the VP with van as head of the PP.

Semantic change:

Change the 'swarm’ connotation into the main meaning of the proposition:
it is full of....".
Rule statement: Swarm_alt

[Ex. de mensen stikken hier -> het stikt hier van de mensen]

Adv-to-Ea

Syntactic change: .

If there's a locative advP and the ea position is empty, then:
-move the NP to the ea position.

Rule statement; Adv_to_DO
[Ex. _krioelt van de mieren in de keuken -> de keuken krioelt van de mieren]

PP-to-Direct Object
Syntactic change: ‘
If there's a PP-adjunct that denotes the goal of the action that is denoted by the verb
then:
-remove the P and move the remaining NP to direct object position.
Rule statement: PP_to_DO
[Ex. hij schiet op fazanten -> hij schiet fazanten]

PP-to-Indirect Object
Syntactic change:
If there's a benefactive PP-adjunct, then:
-remove the P and move the remaining NP to indirect object position.
Rule statement: PP_to_IO
(Ex. Jan zegt iets tegen Tom -> Jan zegt Tom iets]

Preposition incorporation
Syntactic change:
If there's a PP-adjunct, then:
-incorporate the P in the beginning of the verb and move the remaining NP to direct
object position.
Comment:
Often a verb with incorporated P becomes a new lexeme with its own meaning, so that
the meaning can't be predicted from the compositional parts. (e.g. 'doorlopen’ (= 'to
walk through') which can mean something like 'to walk fast'.) But in this case the stress
swithes to the preposition part. So, probably a lot of cases must be dealt with in the cross
derivational rules.
Rule statement: Incorp_prep
[Ex. hij denkt over de zaak -> hij overdenkt de zaak]

Troll: derivational rules of Dutch Vs

be-alternation
Syntactic change:
If there's a PP-adjunct that denotes 'aboutness’, goal or location, then:

-remove the P, turn the remaining NP into a direct object and prefix be to the verb.
Rule statement: be_alt :

[Ex. Jan zingt over de liefde -> Jan bezingt de liefde]

Partitive object
Syntactic change:
If there's a quantified direct object NP, then:
-turn this NP into a partitive object, which means: take the quantifier apart and

substitute er van with the NP, so that er precedes the quantifier and van follows the
quantifier.

g Lomment:

er refers to the object that is quantified. This rule turns a quantified NP into a quantified
PP.

Rule statement: PartObj
[Ex. Jan eet veel appels -> Jan eet er veel van]

Substitution NP - gm-Inf
Syntactic change;

Replace an NP with an om-infinitive and extrapose the om-infinitival clause
Rule statement: NP_to_om-Inf
[Ex. Jan probeert iets -> Jan probeert om te komen]

Indirect object-to-PP

Syntactic change:

Turn an indirect object into a PP adjunct

Rule statement:; 10 _to_PP

[Ex. Jan geeft zijn moeder cen kado -> Jan geeft een kado aan zijn moeder]

Indirect Object Passive
Syntactic change:
If there's an indirect object, then:

-change the agentive external argument into an implicit argument and passivize the
verb.
-move the indirect object into ea position.
Semantic change;
This passive rule adds, as all passive rules do, an objective aspect to the meaning of the
SAF.
Comment::
This rule is not very productive in Dutch and occurs in the standard language only in
some frozen expressions.
Rule statement: I0_Pass
[Ex. de agent verzoekt ons door te lopen -> wij worden verzocht door te lopen]

¢r insertion

Syntactic change:

If a preposition doesn't have an NP complement, then:
insert er before the preposition

Rule statement: er_ins

[Ex. Jan denkt aan -> Jan denkt er aan]

Substitution of datS with propositional complement
Syntactic change:
If there's a datS with a predicative (?) function, then:
-replace the datS with an alsof clause.
Rule statcment: datS_to_prop_compl
|Ex. Het lijkt dat Jan ziek is -> Het lijkt alsof Jan ziek is]

Troll: derivational rules of Dutch Vs

Propositional complement predication
Syntactic change:
If there's a manner adverb, then:
-replace it with a propositional complement, i.e. als-NP or alsof clause.
Rule statement: Pred_prop_compl
[Ex. Jan gedraagt zich slecht -> Jan gedraagt zich als een idioot]

IEa load alternation
Syntactic change: .
If, in a frame with a theme ea, there is an intransitive verb small clause with a locative
object, then:
-move the direct object to the ea position and turn the ea into a PP (which'is headed by
the P met)

Rule statement: ea_load_alt
[ex. het water stroomt het gat vol -> het gat stroomt vol met water]

Experiencer insertion

Syntactic change:

If a there's an agent in the SAF (explicit or implicit), then:
-modify the VP or the direct object with an adverbial phrase that denotes a ‘too much'
dégree: 'te-Adv' .
-insert an NP with the experiencer role in indirect object position.

Rule statement: Exp_ins

[Ex. hij leest bocken -> hij leest me te veel bocken]

Infinitive passive raising
Syntactic change:
If there's a SAF of laten3, then:
-raise the indirect object of the infinitive complement, if present, to the ea position of
laten3, else
-raise the direct object of the infinitive complement to the ea position of laten3.
Comment:
laten3 has a passivizing function. It seems to be the only verb with this characteristic.
Rule statement: Inf_Pass_Rais
(Ex. _laten zich de oplossing raden -> de oplossing laat zich raden]

Noun Incorporation
Syntactic change:
If there's an inherent object, then:
-prefix the bare noun singular to the verb.
Rule statement: Incorp_N
[Ex. Hij speelt piano -> pianospelen]

Passive-short
Syntactic change:
If the frame contains an external argument that causes (active as an agent or passive being
a theme) the action or activity that is instantiated by the verb, then:
-demote the external argument to an implicit argument
-put the verb in passive form

Passive-long
Syntactic change:
If the frame contains an external argument that causes the action or activity that is
instantiated by the verb and contains no direct object reflexive, then:
-demote the external argument to a PP, headed by the preposition van
-put the verb in passive form

Lh

App. 9c

TROLL.: derivations of Dutch Vs

Derivations of Verbs!

)iy

hij_zingt:

wordt_gezongen:
er_zingt_iemand:
het_zingt_lekker:
het_zit_lekker_op_deze_stoel:
deze_stoel_zit_lekker:

hij_rookt_me_teveel:

hij_zingt_een_lied:
wordt_een_lied_gezongen:

het_lied_zingt_lekker:
hij_schnjft_me_teveel_bocken:
hij_zingt_het_lied_uit:

het_lied_uitzingen:
wordt_het_lied_uitgezongen:

de_klokken_luiden_de_feestdag_in:

de_feestdag_inluiden:
wordt_ingeluid_de_feestdag:
hij_zingt_zich_te_pletter:
zich_rotrennen:

base
base | Pass
base | Exist_er_ins

base | VP_Qual | het_ins
base | PP_ad | VP_Qual | het_ins
base | PP_ad | YP_Qual | Middle_alt

base | Exp_ins

base | CogObj
base | CogObj | Pass

base | CogObj | VP_Qual | Middle_alt
base | CogObj | Exp_ins

base | CogObj | TV_smcl_AdvP
base | CogObj | TV_smcl_AdvP | Incorp_Adv
base | CogObj | TV_smcl_AdvP | Incorp_Adv | Pass

base | IV_smcl_AdvP _

base | IV_smcl_AdvP | IncorpAdv

base | IV_smcl_AdvP | IncorpAdyv | Pass
base | IV_smcl_AdvP | DO_refl

base | IV_smcl_AdvP | DO_refl | Incorp_Adv

! I'm not surc of the grammaticality or derivation of the examples marked with "/".

TROLL: derivations of Dutch Vs

hij_loopt_de_schoenen_scheef:
de_schoenen_scheeflopen:
worden_scheefgelopen_de_schoenen:
hij_lacht_zich_dood:
zich_doodlachen:

hij_zingt_de_buren_het_huis_uit:
de_buren_het_huis_uitzingen:
wordt_iemand_het_huis_uitgezongen:
wordt_iemand_onder_de_voet_gelopen:
hij_zingt_zich_in_de_zevende_hemel:

ze_luiden_de_klok:

het_krioelt_van_de_mieren:
de_keuken_krioelt_van_de_mieren:

hij_gaat_weg:
weggaan:
wordt_weggegaan:

hij_gaat_aan_land:
hij_spreekt_met_Tom:

wordt_met_Tom_gesproken:
hij_spreekt_met_Tom_over_het_eten:

wordt_met_Tom_over_het_eten_gesproken:

hij_spreekt_Tom:
hij_spreekt_Tom_over_het_eten:

hij_schiet_fazanten:
worden_fazanten_geschoten:

hij_overdenkt_de_zaak:

hij_bezingt_de_liefde:

base | IV_smcl_AP

base | IV_smcl_AP | Incorp_A

base | IV_smcl_AP | Incorp_A | Pass
base | IV_smcl_AP | DO_refl

base | IV_smcl_AP | DO_refl | Incorp_AP

base | IV_smcl_PP

base | IV_smcl_PP | Incorp_P

base | IV_smcl_PP | Incorp_P | Pass
base | IV_smcl_PP | Pass

base | IV_smcl_PP | DO_refl

base | Ea_Caus

base | Swarm_alt | het_ins
base | Swarm_alt | Adv_to_ea

base | SuPredad_advP
base | SuPredad_advP | Incorp_Adv
base | SuPredad_advP | Incorp_Adv | Pass

base | SuPredad_PP

base | PP_ad

base | PP_ad | Pass

base | PP_ad | PP_ad

base | PP_ad | PP_ad | Pass

base | PP_ad | PP_to_DQO
base | PP_ad | PP_to_DO | PP_ad

base | PP_ad | PP_to_DQ
base | PP_ad | PP_to_DQO | Pass

base | PP_ad | Incorp_prep
base | PP_ad | be_alt

2

TROLL: derivations of Dutch Vs

wordt_de_liefde_bezongen:
hij_beschildert_zich:

hij_speelt_viool:
wordt_viool_gespeeld:
pianospelen:
hij_schiet_kogels_op_Jan:
worden_kogels_geschoten_op_Jan:
boogschieten_op_de vijand:

hij_schiet_Tom_in_het_been:

wordt_geschoten_Tom_in_het_been:

hij_schiet_zich_door_het_hoofd:

ze_vliegt_Tom_om_de_hals:
wordt_Tom_om_de_hals_gevlogen:

hij_loopt_een_rondje:
wordt_een_rondje_gelopen:
(2) erg
kookt_het_water:
er_kookt_water:
:Qiimﬁalwoo_ﬁ“

i

het_water_stroomt_de_kuil_vol:
de_kuil_volstromen:
de_kuil_siroomt_vol_met_water:

een_stem_verheft_zich:
er_verheft_zich_een_stem:

het_gat_vult_zich_met_water:

base | PP_ad | be_alt | Pass
base | PP_ad | be_alt | DO-refl

base | InhObj

base | InhObj | Pass

base | InhObj | Incorp_N

base | InhObj | PP_ad

base | InhObj | PP_ad | Pass
base | InhObj | PP_ad | Incorp_N

base | PP_ad | Part_Wh_to_DO
base [PP_ad | Part_ Wh_to_DO | Pass
base | PP_ad | Part_Wh_to_DQ | DO_refl

base | PP_ad | Part_ Wh_to_IO
base | PP_ad | Part_Wh_to_IO | Pass

base | Adv_to_DO
base | Adv_to_DO | Pass

base
base | Exist_er_ins
base | Prom_to_ea

base | Prom_to_ea | IV_smcl_AP

base | Prom_to_ea | IV_smcl_AP | Incorp_A
base | Prom_to_ea | IV_smcl_AP | Ea_load_alt

base | Erg_refl | Prom_to_ea
base | Erg_refl | Exist_er_ins

base | m_,mzam I load_alt | Prom_to_ea

TROLL: derivations of Dutch Vs

hij_kookt_water:
hij_verheft_zch:

hij_vult_de_handen_met_snoep:
hij_vult_haar_de_handen_met_snoep:
hij_vult_z:ch_de_handen_met_snoep:

hij_smelt_het_ijs_weg: °
het_ijs_wegsmelten:
wordt_weggesmolten_het_ijs:

hij_kookt_de_eieren_hard:
de_eieren_hardkoken:
worden_hardgekookt_de_eieren:

hij_kookt_de_appels_tot_moes:

worden_de_appels_tot_moes_gekookt:

/hij_kookt_de_pan_door:
/de_pan_doorkoken:
/wordt_doorgekookt_de_pan:

hij_kookt_de_pan_zwart:
de_pan_zwartkoken:
wordt_zwartgekookt_de_pan:
hij_kookt_zich_ziek:

hij_kookt_een_gat_in_de_pan:
wordt_een_gat_in_de_pan_gekookt:
hij_kookt_zich_het_huis_uit:

het_ijs_smelt_weg:
het_ijs_is_weggesmolten:

de_aardappels_koken_droog:
de_aardappels_zijn_drooggekookt:

base | Caus
base | Caus | DO_refl

base | Caus | PP_ad | load_alt
base | Caus | PP_ad | load_alt| IO_ins
base | Caus | PP_ad | load_alt | IO _ins | 10O_refl

base | Caus | TV_smcl_AdvP
base | Caus | TV_smcl_AdvP | Incorp_Adv
base | Caus | TV_smcl_AdvP | Incorp_Adv | Pass

base | Caus | TV_smcl_AP
base | Caus | TV_smcl_AP | Incorp_A
base | Caus | TV_smcl_AP | Incorp_A | Pass

base | Caus | TV_smcl_PP
base | Caus | TY_smcl_PP | Pass

base | Caus | DO_del | IV_smcl_AdvP
base | Caus | DO_del I TV_smcl_AdvP | Incorp_Adv
base | Caus | DO_del ITV_smcl_AdvP | Incorp_Adv | Pass

base | Caus | DO_del | TV_smcl_AP

base | Caus | DO_del | IV_smcl_AP | Incorp_A

base | Caus | DO_del | IV_smcl_AP | Incorp_A | Pass
base | Caus | DO_del | IV_smcl_AP | DO_refl

base | Caus | DO_del | IV_smcl_PP
base | Caus | DO_del | IV _smcl_PP | Pass
base | Caus | DO_del | IV_smcl_PP | DO_refl

base | TV_smcl_AdvP | Prom_to_ea
base | TV_smcl_AdvP | Incorp_Adv | Prom_to_ea

base | TY_smcl_AP|Prom_to_ea
bese | TV_smcl_AP | Incorp_A | Prom_to_ea

TROLL: derivatons of Dutch Vs

de_appels_koken_tot_moes:
/datS_komt_voor:
/het_komt_voor_datS:
/het_doet_zich_voor_datS:
het_ligt_eraan_ofS:

(3) exp_iv

Jan_is_het_gezeur_beu:

Jan_heeft_het_warm:

(4) v

hij_slaat_de_hond:

wordt &om_m_mnnlaolroa“
er_slaat_iemand_een_hond:
hij_wast_zich:
hij_eet_me_teveel_worst:
E.T&Ql@n:.lmnmnlwoaomu
de_bal_gooit_lekker:
ze_maakt_het_bed_op:
het_bed_opmaken:
wordt_opgemaakt_het_bed:

z1j_maakt_zich_op:
zich_opmaken:

te

base | TV_smcl_PP | Prom_to_ea

base | TV_smcl_AdvP | NP_to_datS | Anti_exp

base | TV_smcl_AdvP | NP_to_datS | het_ins

base | TV_smcl_AdvP I NP_to_datS | Erg_refl | het_ins

base | PP_ad | NP_to_ofS l er_ins | het_ins

base

base | del_DQ | het_ins

base

base | Pass

base | Exist_er_ins

base | DO_refl

base | Exp_ins

base | Acl

base | VP_Qual | Middle_alt

base | TV_smcl_AdvP

base | TV_smcl_AdvP | Incorp_Adv

base | TY_smcl_AdvP | Incorp_Adyv | Pass

base | TV_smcl_AdvP | DO_refl
base | TV_smcl_AdvP | DO_refl | Incorp_Adv

TROLL: derivations of Dutch Vs

hij_wast_de_kleren_schoon:
de_kleren_schoonwassen:
worden_de_kleren_schoongewassen:

hij_voegt_water_bij_de_wijn:
wordt_water_bij_de_wijn_gedaan:
de_kogels_de_lucht_inschieten:

worden_de_kogels_de_lucht_ingeschoten:

hij_voegt_zich_bij_een_gezelschap:
ze_maakt_me_te_vaak_de_boel _schoon:

hij_drinkt:
wordt_gedronken:

er_eet_iemand:
hij_drinkt_me_teveel:
hij_eet_er_veel_van:

het_drinkt_lekker_uit_dit_glas:
dit_glas_drinkt_lekker:

zij_doet_hem_tekort:
1emand_tekortdoen:
zij_doet_zich_tekort:
wordt_hij_tekort_gedaan:
worden_de_zorgen_weggedronken:

hij_eet_het_bord_leeg:
het_bord_leegeten:
wordt_het_bord_leeggegeten:
Jan_eet_zich_dik:
zich_diketen:

base | TV_smcl_AP
base | TV_smcl_AP | Incorp_Adv
base | TV_smcl_AP | Incorp_Adyv | Pass

base | TY_smcl_PP
base | TV_smcl_PP | Pass
base | TV_smcl_PP | Incorp_P

base | TV_smcl_PP | Incorp_P | Pass
base | TV_smcl_PP | DO_refl

base | TV_smcl_* | Exp_ins

base | DO_del
base | DO_del | Pass

base | DO_del | Exist_er_ins
base | DO_del | Exp_ins
base | PartObj

base | DO_del | PP_ad | VP_Qual | het_ins
base | DO_del | PP_ad | VP_Qual | Middle_alt

base | DO_del | IV_smcl_AdvP

base | DO_del | IV_smcl_AdvP | Incorp_Adv

base | DO_del | IV_smcl_AdvP | DO_refl | Incorp_Adv
base | DO_del | IV_smcl_AdvP Pass

base | DO_del | IV_smcl_AdvP | Incorp_Adv | Pass

base | DO_del | IV_smcl_AP

base | DO_del | IV_smcl_AP | Incorp_A

base | DO_del | IV_smcl_AP | Incorp_A | Pass
base | DO_del [IV_smcl_AP | DO _refl

base -DO_del I TV_smcl_AP | Incorp_A | DO_refl

TROLL: derivadons of Dutch Vs

hij_drinkt_Tom_onder_de_tafel:
wordt_Tom_onder_de_tafel_gedronken:
hij_drinkt_zich_onder_de_tafel:

hij_dnnkt_me_zich_te_vaak_onder_tafel:

hij_eet_van_het_brood:
wordt_gegeten_van_het_brood:

hij_drinkt_de_koffie_zwart:
wordt_de_koffie_zwart_gedronken:

hij_zegt_iets_tegen_Tom:
wordt_iets_tegen_Tom_gezegd:
hij_zegt_iets_tegen_Tom_over_mij:
wordt_gezegd_iets_tegen_Tom_over_mij:

hij_zegt_Tom_iets:
wordt_Tom_iets_gezegd:
hij_zegt_Tom_iets_over_mij:
wordt_Tom_iets_over_mij_gezegd:

hij_laadt_de_wagen_met_hooi:
wordt_de_wagen_met_hooi_geladen:
hij_laadt_de_wagen:
wordt_de_wagen_geladen:

hij_gooit_Tom_egn_boek_naar_het_hoofd:

wordt_Tom_een_boek_naar_het_hoofd_gegooid:

hij_gooit_zich_een_boek_naar_het_hoofd:

hij_zegt_datS:
wordt_gezegd_datS:

hij_zegt_tegen_haar_datS:
wordt_tegen_haar_gezegd_datS: i

base | DO_del | IV_smcl_PP
base | DO_del | IV_smcl_PP | Pass
base | DO_del | IV_smcl_PP | DO_refl

base | DO_del I IV_smcl_* | Exp_ins

base | DO_to_PP
base | DO_to_PP | Pass

base | ObjQual
base | ObjQual | Pass

base | PP_ad

base | PP_ad | Pass

base | PP_ad | PP_ad

base | PP_ad | PP_ad | Pass

base | PP_ad | PP_to_IO

base | PP_ad | PP_to_IO | Pass

base | PP_ad | PP_to_IO | PP_ad

base | PP_ad | PP_to_IO | PP_ad | Pass

base | PP_ad | load_alt

base | PP_ad | load_alt | Pass

base |'PP_ad | load_alt | del_PP

base | PP_ad | load_alt | del_PP | Pass

base | PP_ad | Part_ WH_to_IO
base | PP_ad | Part_WH_to_IO | Pass
base | PP_ad | Part_ WH_to_IO | IO_refl

base | NP_to_datS
base | NP_to_datS | Pass

base | NP_to_datS | PP_ad
base | NP_to_datS | PP_ad | Pass

TROLL: denivations of Dutch Vs

hyj_zegt_Mana_datS:
wordt_Maria_gezegd_datS:

hij_zegt_wS:
wordt_gezegd_wS:

hy)_zegt_tegen_Tom_wS:
wordt_tegen_Tom_gezegd_wS:

hij_zegt_Maria_wS:
wordt_Maria_gezegd_wS:

hij_probeert_om-Inf:
wordt_geprobeerd_om-Inf:

hij_probeert_te-Inf:
wordt_geprobeerd_te:

hij_zegt_te-Inf:

hij_zegt_tegen_Maria_te-Inf:
hij_zegt_Maria_te-Inf:

(5) th_tv
vloeipapier_absorbeert_inkt:

wordt_de_inkt_geabsorbeerd:

(6) exp_tv
hij_houdt_van_koffie:

hij_lust_de_koffie_zwart:

base | Zwlnolamﬂw. | PP_ad | PP_to_IO
base | NP_to_datS | PP_ad | PP_to_IO | Pass

base | NP_to_wS
base | NP_to_wS | Pass

base | NP_to_wS | PP_ad |
base | NP_to_wS | PP_ad | Pass

base | NP_to_wS | PP_ad | PP_to_IO
base | NP_to_wS | PP_ad | PP_to_IO | Pass

base | NP_to_om-Inf
base | NP_to_om-Inf | Pass

base | NP_to_te-Inf
base | NP_to_te-Inf | Pass

base | NP_to_te-Inf

base | NP_to_te-Inf | PP_ad
base | NP_to_te-Inf | PP_ad | Pass

base

base | Pass

base

base | Depict

TROLL: derivations of Dutch Vs
hij_lust_er_veel_van:

(7) ditr

Hij_geeft_Tom_geld:
wordt_Tom_geld_gegeven:

er_geeft_iemand_een_boek_aan_haar:

hij_geeft_geld:
wordt_geld_gegeven:

er_geeft_1emand_een_boek:

hij_geeft_geld_aan_de_armen:
wordt_geld_aan_de_armen_gegeven:
hij_geeft_aan_de_armen:

hij_geeft_zich_helemaal:

hij_geeft:
wordt_gegeven:
hij_geeft_me_teveel_kado's:

hij_geeft_een_emmer_vol:
een_emmer_volgeven:
wordt_een_emmeér_volgegeven:

hij_geeft_het_plan_op:
het_plan_opgeven:
wordt_het_plan_opgegeven:

/hij_stuurt_alles_in_de_war:
/wordt_alles_in_de_war_gestuurd:

base | PartObj

base
base | Pass
base | Exist_er_ins

base [IO_del
base | IO_del | Pass

base | IO_del | Exist_er_ins

base | I0_to_PP
base | I0_to_PP | Pass
base | IO_to_PP | DO_del

base | IO_del | DO _refl

base | IO_del | DO_del
base | I0_del | DO_del | Pass
base | IO_del | Exp_ins

base | IO_del | DO_del | TV_smcl_AP
base | IO_del | DO_del | IV_smcl_AP | Incorp_A
base | I10_del | DO_del | IV_smcl_AP | Incorp_A | Pass

base | IO_del | DO_del | IV_smcl_AdvP
base | I0_del | DO_del | IV_smc]l_AdvP | Incorp_Adv
base 1 10_del | DO_del | IY_smcl_AdvP | Incorp_Adyv | Pass

base | IO_del | DO_del I IV_smcl_PP
base [10_del | DO_del | IV_smcl_PP | Pass

TROLL: derivatons of Dutch Vs

hij_geeft_er_veel_van_aan_Piet:
er_wordt_veel_van_aan_Piet_gegeven:

hij_geeft_er_veel_van:
er_wordt_veel_van_gegeven:

hij_geeft_het_geld_weg:
het_geld_weggeven:
wordt_het_geld_weggegeven:
Peter_geeft_zich_over:
zich_overgeven:

hij_stuurt_het_geld_het_land_uit:
het_geld_het_land_uitsturen:
wordt_het_geld_het_land_uitgestuurd:

hij_geeft_Tom_een_stomp_in_de_rug:
wordt_Tom_een_stomp_in_de_rug_gegeven:

Peter_gunt_zich_gjd:

hij_belooft_haar_datS:
wordt_haar_beloofd_datS:
hij_beloofd_datS:
wordi_beloofd_datS;
hij_belooft_aan_haar_datS:
wordt_aan_haar_beloofd_datS:

hij_vraagt_Piet_ofS:
wordt_Piet_gevraagd_ofS:
hij_vraagt_aan_Piet_ofS:
wordt_aan_Piet_gevraagd_ofS:
hij_vraagt_of:
wordt_gevraagd_of:
zich_afvragen_of:

hij_belooft_haar_om-Inf:

base | PartOb;
base | PartObj | Pass

base | IO_del | PartObj
base | IO_del | PartObj

base 1 IO_del | TV_smcl_AdvP

base | IO_del | TV_smecl_AdvP | Incorp_Adv

base | IO_del | TV_smcl_AdvP | Incorp_Adv | Pass
base | IO_del | TV_smcl_AdvP | DO_refl

base | IO_del | TV_smcl_AdvP | Incorp_Adv | DO_refl

base [IO_del | TV_smcl_PP
base | 10_del | TV_smcl_PP | Incorp_P

base | IO_del | TV_smcl_PP | Incorp_P | Pass

base | IO_del | Part_Wh_to_IO
base | IO_del | Part_Wh_to_lO | Pass

base | IO_refl

base | NP_to_datS

base | NP_to_datS | Pass

base | NP_to_datS | I0_del

base | NP_to_datS | IO_del | Pass
base | NP_to_datS | IO_to_PP

base | NP_to_datS | IO_to_PP | Pass

base | NP_to_ofS

base | NP_to_ofS | Pass

base | NP_to_ofS | IO_to_PP

base | NP_to_ofS | IO_to_PP | Pass
base | NP_to_ofS | IO_del

base | NP_to_ofS | IO_del | Pass
base | NP_to_ofS | IO_refl

base | NP_to_om-Inf

10

TROLL: derivatons of Dutch Vs

hij_belooft_om-Inf:

hij_belooft_haar_te-Inf:
E.lvﬂoomlmo-gm

worden_de_krakers_verzocht_te-Inf:

(8) refl

hij_schaamt_zich:
hij_schaamt_zich_voor_zijn_auto:
hij_schaamt_zich_ervoor_datS:
hij_schaamt_zich_ervoor_om-Inf:

hij_schaamt_zich_ervoor_te-Inf:

(9) psych
verveelt_hem_het_boek:
het_boek_verveelt_hem:

hij_verveelt_zich:

hij_interesseert_zich_voor_het_boek:

/hij_is_verveeld:
/hij_is_geinteresseerd_in_het_boek:

het_boek_verveelt:

het_interesseert_Tom_datS:

base | NP_to_om-Inf | IO _del

base | NP_to_te-Inf
base | NP_to_te-Inf | IO_del

base | IO_Pass

base

base | PP_ad

base | PP_ad | NP_to_datS | er_ins
base | PP_ad | NP_to_om-Inf | er_ins

base | PP_ad | NP_to_te-In | er_ins

base

base | Prom_to_ea

base | DO_del | ExpMvt
base | ExpMvt | DO_to_PP

base | DO_del | ExpAd;
base | ExpAdj | DO_to_PP

base | Exp_del | Prom_to_ea
bace [NP 101,858 [hetdins

11

TROLL: derivations of Dutch Vs

datS_interesseert_Tom:

het_interesseert_Tom_wS:
wS_interesseert_Tom:

het_interesseert_Tom_om-Inf;

het_verbaast_Tom_te:
te-Inf_bevalt_Tom:

hij_erger:_zich_erover_datS:
hij_interesseert_zich_ervoor_wS:
hij_interesseert_zich_ervoor_om-Inf:
hij_verbaast_zich_erover_te-Inf:

(10) raisvl
blijken_datS:

het_blijkt_datS
alles_blijkt_fout_te_zijn:
alles_blijkt_fout:

(11) raisv2
lijken_mij_datS:

het_ljjkt_mij_datS
het_lijkt_datS:
het_lijkt_me_alsof:
het_lijkt_alsof:
Tom_lijkt_mij_ziek_te_zijn:
Tom_lijkt_ziek_te_zijn:
Tom_lijkt_mij_ziek:
Tom_lijkt_ziek:

base | NP_to_datS'| Anti_exp

base | NP_to_wS | het_ins
base | NP_to_wS | Anti_exp

base | NP_to_om-Inf | het_ins

base | NP_to_te-Inf | het_ins
base | NP_to_te-Inf | Anti-ext

base | ExpMvt | NP_to_datS | er_ins
base | ExpMvt| NP_to_wS | er_ins
base | ExpMvt | NP_to_om-Inf | er_ins
base | ExpMvt | NP_to_ te-Inf | er_ins

base

base | het_ins
base | datS_to_Cl_inf | SubjRais
base | datS_to_Cl_inf | SubjRais | te-Inf_to_predic_AP

base

base | het_ins

base | het_ins | IO_del

base | het_ins | datS_to_prop_compl

base | het_ins | datS_to_prop_compl | IO_del

base | datS_to_CL_inf | SubjRais

base | datS_to_CL_inf | SubjRais | I0O_del

base | datS_to_CL_inf | SubjRais | te_inf_to_predic_AP

base | datS_to_CL_inf | SubjRais | te_inf_to_predic_AP | 10_del

TROLL: derivations of Dutch Vs

(12) raisv3
lijken_op_iets:
het_lijkt_op_iets:
het_lijkt_erop_datS:

(13) depict

dat_hij_zich_Tom_voorstelt:
er_stelt_zich_iemand_Tom_voor:
hij_stelt_zich_voor_datS:
hij_stelt_zich_Tom_gezond_voor:

(14) smcl

men beschouwt_Tom_als_een_genie:
anﬂlﬂouf&w _genie_beschouwd:
er_beschouwt_iemand_Tom_als_geniaal:

hij_beschouwt_zich_als_een_genie:

(15) iv_Iloc
hij_woont_in_de_stad:

wordt_in_dat_krot_gewoond:

base
base | het_ins

base | het_ins | NP_to_datS | er_ins

base
base | Exist_er_ins

base | NP_to_datS
base | NP_to_datS | datS_to_SC

base
base | Pass
base | mﬁ.mﬁloﬁ_m:m

base | DO_refl

base

base | Pass

13

TROLL: derivauons of Dutch Vs

o_.léoo.sﬁlmoammalmblaaeﬁon
:Qiiomal_nwwﬂfalaalmﬁa“
" Tilburg_winkelt_afschuwelijk:
(16) refl_loc
dat_hij_zich_ophoudt_in_Noorwegen:

er_houdt_zich_iemand_op_in_Noorwegen:

A7) wv_loc
hij_zet_de_bloemen_op_de_tafel:

worden_de_bloemen_op_tafel_gezet:

(18) ind_arg
hij_verlangt_naar_haar:
wordt_noar_haar_verlangd:

er_verlangt_iemand_naar_haar:

(19) di_ind_arg
dat_hij_bij_Marie_op_iets_aandringt:
wordt_zijn_leven_aan_de_studie_gewijd:

er_wijdt_iemand_zijn_leven_aan_de_studie:

A

base | Exist_er_ins

base | PP_ad | VP_Qual | het_ins
base | PP_ad | VP_Qual | Middle_alt

base

base | Exist_er_ins

base

base | Pass

base
base | Pass

base | Exist_er_ins

base
base | Pass

base | Exist_er_ins

14

TROLL: derivations of Dutch Vs

Peter_wijdt_zich_aan_de_studie:

Peter_verzekert_zich_van_de_overwinning:

(20) ind_arg_refl
ze_verdiepen_zich_in_het_spoorboekje:

er_verdiept_zich_iemand_in_de_krant:

(21) weather
sneeuwt:
het_stinkt:

het_hagelt_grote_korrels:
het_hagelt_grote_korrels_Vens:

(22) measure

de_steen_weegt_3_kg:

(23) repr
dat_de_foto_Tom_voorstelt:

er_stelt_iemand_de_koning_voor:

(24) appellatl

base | DO_refl

base | IO_refl

base

base | Exist_er_ins

base
base | :Q.lim

base | het_ins | CogObyj
base | het_ins | CogObj | ObjQual

base

base

base | Exist_er_ins

15

TROLL: denivauons of Dutch Vs

hij_benoemt_hem_tot_opperhoofd:

wordt_benoemd_Jan_tot_opperhoofd:

er_benoemt_iemand_Jan_tot_chef:
%oalcn:ooﬂﬁlﬁnwlﬂoﬁlmamaosn_”
Tom_benoemt_Piet:
wordt_Piet_benoemd:

(25) appellat2
hij_noemt_Jan_een_genie:
wordt_genoemd_Tom_een_genie:
er_noemt_iemand_Jan_een_genie:

hij_noemt_zich_geniaal:

(26) refl_manner
hij_gedraagt_zich_uitstekend:
nﬂl_moaﬂmmﬂlﬁoﬁoamsalaﬁﬁwgan
hij_gedraagt_zich_als_een_idioot:

hij_gedraagt_zich_alsof_hij_idioot_is:

(27) erg_ditv

wacht_Tom_een_ongeluk:

base

base | Pass

base | Exist_er_ins
base | DO_refl

base | del_PP
base | del_PP [Pass

base
base | Pass
base | Exist_er_ins

base | DO_refl

base

base | Exist_er_ins

base | Predic_als |

base | Ta&o:vawtooEE

@mmo..

16

TROLL: derivations of Dutch Vs

er_wacht_Tom_een_ongeluk:

~een_ongeluk_wacht_Tom:

(28) ben_tv

hij_betaalt_haar: :
wordt_zij_betaald:
er_betaalt_iemand_de_werkster:
hij_betazit_aan_haar:

hij_betaalt_haar_voor_het_werk:
wordt_voor_het_werk_betaald:

hij_betaalt:
wordt_betaald;

het_betaalt_gemakkelijk_met_checks:

checks_betalen_gemakkelijk:

(29) cop
zijn_ik_ziek:
ik_ben_ziek:
er_is_iemand_ziek:

dat_het_gaat_vriezen_is_zeker:
het_is_zeker_dat_het_gaat_vriezen:

base | Exist_er_ins

base | Prom_to_ea

base

base | Pass

base | Exist_er_ins
base | IO_to_PP

base | PP_ad
base | PP_ad | Pass

base | IO_del
base | IO_ael | Pass

base | IO_del | PP_ad | VP_Qual | het_ins
base | IO_del | PP_ad | VP_Qual | Middle_alt

base
base | Prom_to_ea
base | Exist_er_ins

base | NP_to_datS | Anti_exp
base | NP_to_datS | het_ins

17

TROLL: derivations of Dutch Vs

wie_er_komt_is_bekend:
het_is_bekend_wie_er_komt:
het_is_goed_te_trainen:

(30a) latenl
hij_laat_Piet_spaghetti_maken:
er_laat_iemand_Piet_buiten_spelen:
hij_laat_haar_ombrengen:
hij_laat_zich_pesten:

(30b) laten2
hij_laat_de_jas_hangen:
er_laat_iemand_een_boek_op_tafel_liggen:

hij_laat_zich_gaan:

(30c) laten3

laten_een oplossing_vinden:
laten_zich_een_oplossing_vinden:
cen_oplossing_laat_zich_vinden:

er_laat_zich_een_oplossing_vinden:

base | NP_to_wS | Anti_exp
base | NP_to_wS | het_ins
base | NP_to_te-Inf | het_ins

base
base | Exist_er_ins

base | IO_del
base | IO_del | DO_refl

base
base | Exist_er_ins

base | DO_refl

base

base | Erg_refl

base | Erg_refl | stlwm_mmlwam

base | mmml_nam | Inf_Pass_Rais | Exist_er_ins

18

